Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
R - Mortality Tables
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
R
R - Mortality Tables
Commits
84df6e4e
Commit
84df6e4e
authored
7 years ago
by
Reinhold Kainhofer
Browse files
Options
Downloads
Patches
Plain Diff
Move anwartschaften.R to the pensionstafel project
parent
df76d32c
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
R/anwartschaften.R
+0
-116
0 additions, 116 deletions
R/anwartschaften.R
with
0 additions
and
116 deletions
R/anwartschaften.R
deleted
100644 → 0
+
0
−
116
View file @
df76d32c
#' @include pensionTable.R
NULL
bwRente
=
function
(
p
,
v
)
{
Reduce
(
function
(
pp
,
ax1
)
{
1
+
pp
*
ax1
*
v
},
p
,
0.0
,
right
=
TRUE
,
accumulate
=
TRUE
)[
-
(
length
(
p
)
+
1
)];
}
reservesThieleRecursion
=
function
(
p
,
ai
,
aij
,
states
,
i
=
0.03
)
{
v
=
1
/
(
1
+
i
)
# Recursive relation:
# Vi(t,A) = ai(t) + \sum_j v p_ij(t) (aij(t) + Vj(t+1,A))
# with: ai(t) .. payment at t for being in state i
# aij(t) ... payment at t+1 for switching from state i to j
# Vi(t,A) ... reserve for payments A in state i at time t
ThieleRecursion
=
function
(
t
,
Vt1
)
{
rr
=
ai
[,
t
]
+
v
*
rowSums
(
p
[,,
t
]
*
aij
[,,
t
])
+
v
*
as.vector
(
p
[,,
t
]
%*%
Vt1
)
as.vector
(
rr
)
}
# Loop backwards over all times (starting value for reserves is 0)
times
=
dimnames
(
p
)[[
3
]];
res
=
Reduce
(
f
=
ThieleRecursion
,
x
=
times
,
init
=
rep
(
0
,
length
(
states
)),
right
=
TRUE
,
accumulate
=
TRUE
)[
-
(
length
(
times
)
+
1
)]
res
=
do.call
(
"cbind"
,
res
)
dimnames
(
res
)
=
dimnames
(
ai
)
res
}
if
(
FALSE
)
{
res
=
anwartschaften
(
AVOe2008P.female
,
YOB
=
1977
);
res
}
#' Calculates all "anwartschaften" for the gien pension table
#'
#' @param object A pension table object (instance of a \code{\linkS4class{pensionTable}} class)
#' @param ... Currently unused
#' @param i Interest rate (default 0.03)
#' @param YOB Year of birth (default 1982)
#'
#' @examples
#' pensionTables.load("Austria_*", wildcard=TRUE)
#' # anwartschaften(EttlPagler.male, i=0.03, YOB=1972)
#'
#' @exportMethod transitionProbabilities
setGeneric
(
"anwartschaften"
,
function
(
object
,
...
)
standardGeneric
(
"anwartschaften"
));
#' @describeIn anwartschaften Calculates all "anwartschaften" for the gien pension table
setMethod
(
"anwartschaften"
,
"pensionTable"
,
function
(
object
,
...
,
i
=
0.03
,
YOB
=
1982
,
Period
=
NULL
)
{
if
(
!
is.null
(
Period
))
{
probs
=
periodTransitionProbabilities
(
object
,
Period
=
Period
,
...
,
as.data.frame
=
FALSE
);
}
else
{
probs
=
transitionProbabilities
(
object
,
YOB
=
YOB
,
...
,
as.data.frame
=
FALSE
);
}
# Time series of transition probabilities
pp
=
probs
$
transitionProbabilities
;
x
=
dimnames
(
pp
)[[
3
]]
# Use a data.frame for the annuity PV with the actual ages as dimnames,
aw
=
data.frame
(
aw
=
bwRente
(
1
-
probs
$
widows
[
"qw"
],
1
/
(
1
+
i
)));
dimnames
(
aw
)[[
1
]]
=
x
# Expected death benefit (widows)
# Use avg. age of widow to extract the corresponding annuity present value
# We used the age as dimname, so we can use simple subsetting
expDeathBenefit
=
probs
$
widows
[[
"h"
]]
*
aw
[
as.character
(
probs
$
widows
[[
"yx"
]]),]
# Build the matrix of transition payments (only on death there is
# the widow PV as benefit, all other transitions do not yield any benefit)
states
=
c
(
"a"
,
"i"
,
"p"
,
"d"
)
transPayments
=
array
(
0
,
dim
=
c
(
4
,
4
,
length
(
x
)),
dimnames
=
list
(
states
,
states
,
x
))
transPayments
[
"a"
,
"d"
,]
=
expDeathBenefit
;
transPayments
[
"i"
,
"d"
,]
=
expDeathBenefit
;
transPayments
[
"p"
,
"d"
,]
=
expDeathBenefit
;
statePayments
=
array
(
0
,
dim
=
c
(
4
,
length
(
x
)),
dimnames
=
list
(
states
,
x
));
aPay
=
reservesThieleRecursion
(
p
=
pp
,
ai
=
statePayments
+
c
(
1
,
0
,
0
,
0
),
aij
=
transPayments
*
0
,
states
=
states
,
i
=
i
)
iPay
=
reservesThieleRecursion
(
p
=
pp
,
ai
=
statePayments
+
c
(
0
,
1
,
0
,
0
),
aij
=
transPayments
*
0
,
states
=
states
,
i
=
i
)
pPay
=
reservesThieleRecursion
(
p
=
pp
,
ai
=
statePayments
+
c
(
0
,
0
,
1
,
0
),
aij
=
transPayments
*
0
,
states
=
states
,
i
=
i
)
wPay
=
reservesThieleRecursion
(
p
=
pp
,
ai
=
statePayments
,
aij
=
transPayments
,
states
=
states
)
list
(
"a"
=
aPay
,
"i"
=
iPay
,
"p"
=
pPay
,
"w"
=
wPay
)
});
if
(
FALSE
)
{
res7
=
anwartschaften
(
AVOe2008P.female
,
YOB
=
1977
);
res8
=
anwartschaften
(
AVOe2008P.female
,
YOB
=
2017
);
res
as.array
(
res
$
aPay
)
str
(
res
$
aPay
)
dimnames
(
res
$
pp
)[[
3
]]
res
[
"102"
,]
res
[,
"aw"
]
a
=
15
:
43
a
a
=
array
(
1
:
8
,
dim
=
c
(
2
,
4
),
dimnames
=
list
(
c
(
"a1"
,
"a2"
),
c
(
"b1"
,
"b2"
,
"b3"
,
"b4"
)));
a
b
=
array
(
11
:
18
,
dim
=
c
(
2
,
4
),
dimnames
=
list
(
c
(
"a1"
,
"a2"
),
c
(
"b1"
,
"b2"
,
"b3"
,
"b4"
)));
b
array
(
a
,
b
)
dimnames
(
a
)
=
c
(
15
:
43
)
an
=
anwartschaften
(
probs
,
YOB
=
1977
);
an
showMethods
(
"anwartschaften"
)
showMethods
(
"transitionProbabilities"
)
array
(
1
:
12
,
dim
=
c
(
2
,
3
,
4
),
dimnames
=
list
(
c
(
"a1"
,
"a2"
),
c
(
"b1"
,
"b2"
,
"b3"
),
c
(
"c1"
,
"c2"
,
"c3"
,
"c4"
)))
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment