NodeManager.h 46.37 KiB
/*
* NodeManager
*/
#ifndef NodeManager_h
#define NodeManager_h
#include <Arduino.h>
// define NodeManager version
#define VERSION "1.6-dev"
/***********************************
Constants
*/
// define board status
#define AWAKE 0
#define SLEEP 1
// define time unit
#define SECONDS 0
#define MINUTES 1
#define HOURS 2
#define DAYS 3
// define on/off
#define OFF 0
#define ON 1
// define value type
#define TYPE_INTEGER 0
#define TYPE_FLOAT 1
#define TYPE_STRING 2
// define interrupt pins
#define INTERRUPT_PIN_1 3
#define INTERRUPT_PIN_2 2
// define eeprom addresses
#define EEPROM_SLEEP_SAVED 0
#define EEPROM_SLEEP_1 5
#define EEPROM_SLEEP_2 6
#define EEPROM_SLEEP_3 7
#define EEPROM_USER_START 100
// define requests
/************************************
* Include user defined configuration settings
*/
#include "config.h"
/***********************************
Default configuration settings
*/
// if enabled, enable debug messages on serial port
#ifndef DEBUG
#define DEBUG 1
#endif
// if enabled, enable the capability to power on sensors with the arduino's pins to save battery while sleeping
#ifndef POWER_MANAGER
#define POWER_MANAGER 1
#endif
// if enabled, will load the battery manager library to allow the battery level to be reported automatically or on demand
#ifndef BATTERY_MANAGER
#define BATTERY_MANAGER 1
#endif
// if enabled, allow modifying the configuration remotely by interacting with the configuration child id
#ifndef REMOTE_CONFIGURATION
#define REMOTE_CONFIGURATION 1
#endif
// if enabled, persist the configuration settings on EEPROM
#ifndef PERSIST
#define PERSIST 0
#endif
// if enabled, send a SLEEPING and AWAKE service messages just before entering and just after leaving a sleep cycle
#ifndef SERVICE_MESSAGES
#define SERVICE_MESSAGES 0
#endif
// if enabled, a battery sensor will be created at BATTERY_CHILD_ID and will report vcc voltage together with the battery level percentage
#ifndef BATTERY_SENSOR
#define BATTERY_SENSOR 1
#endif
// the child id used to allow remote configuration
#ifndef CONFIGURATION_CHILD_ID
#define CONFIGURATION_CHILD_ID 200
#endif
// the child id used to report the battery voltage to the controller
#ifndef BATTERY_CHILD_ID
#define BATTERY_CHILD_ID 201
#endif
// define the maximum number of sensors that can be managed
#ifndef MAX_SENSORS
#define MAX_SENSORS 10
#endif
// define default sketch name and version
#ifndef SKETCH_NAME
#define SKETCH_NAME "NodeManager"
#endif
#ifndef SKETCH_VERSION
#define SKETCH_VERSION "1.0"
#endif
/***********************************
Default module settings
*/
// Enable this module to use one of the following sensors: SENSOR_ANALOG_INPUT, SENSOR_LDR, SENSOR_THERMISTOR, SENSOR_ML8511, SENSOR_ACS712, SENSOR_RAIN_GAUGE, SENSOR_RAIN, SENSOR_SOIL_MOISTURE
#ifndef MODULE_ANALOG_INPUT
#define MODULE_ANALOG_INPUT 0
#endif
// Enable this module to use one of the following sensors: SENSOR_DIGITAL_INPUT
#ifndef MODULE_DIGITAL_INPUT
#define MODULE_DIGITAL_INPUT 0
#endif
// Enable this module to use one of the following sensors: SENSOR_DIGITAL_OUTPUT, SENSOR_RELAY, SENSOR_LATCHING_RELAY
#ifndef MODULE_DIGITAL_OUTPUT
#define MODULE_DIGITAL_OUTPUT 0
#endif
// Enable this module to use one of the following sensors: SENSOR_DHT11, SENSOR_DHT22
#ifndef MODULE_DHT
#define MODULE_DHT 0
#endif
// Enable this module to use one of the following sensors: SENSOR_SHT21, SENSOR_HTU21D
#ifndef MODULE_SHT21
#define MODULE_SHT21 0
#endif
// Enable this module to use one of the following sensors: SENSOR_SWITCH, SENSOR_DOOR, SENSOR_MOTION
#ifndef MODULE_SWITCH
#define MODULE_SWITCH 0
#endif
// Enable this module to use one of the following sensors: SENSOR_DS18B20
#ifndef MODULE_DS18B20
#define MODULE_DS18B20 0
#endif
// Enable this module to use one of the following sensors: SENSOR_BH1750
#ifndef MODULE_BH1750
#define MODULE_BH1750 0
#endif
// Enable this module to use one of the following sensors: SENSOR_MLX90614
#ifndef MODULE_MLX90614
#define MODULE_MLX90614 0
#endif
// Enable this module to use one of the following sensors: SENSOR_BME280
#ifndef MODULE_BME280
#define MODULE_BME280 0
#endif
// Enable this module to use one of the following sensors: SENSOR_SONOFF
#ifndef MODULE_SONOFF
#define MODULE_SONOFF 0
#endif
// Enable this module to use one of the following sensors: SENSOR_BMP085
#ifndef MODULE_BMP085
#define MODULE_BMP085 0
#endif
// Enable this module to use one of the following sensors: SENSOR_HCSR04
#ifndef MODULE_HCSR04
#define MODULE_HCSR04 0
#endif
// Enable this module to use one of the following sensors: SENSOR_MCP9808
#ifndef MODULE_MCP9808
#define MODULE_MCP9808 0
#endif
// Enable this module to use one of the following sensors: SENSOR_MQ
#ifndef MODULE_MQ
#define MODULE_MQ 0
#endif
// Enable this module to use one of the following sensors: SENSOR_MHZ19
#ifndef MODULE_MHZ19
#define MODULE_MHZ19 0
#endif
// Enable this module to use one of the following sensors: SENSOR_AM2320
#ifndef MODULE_AM2320
#define MODULE_AM2320 0
#endif
// Enable this module to use one of the following sensors: SENSOR_TSL2561
#ifndef MODULE_TSL2561
#define MODULE_TSL2561 0
#endif
// Enable this module to use one of the following sensors: SENSOR_PT100
#ifndef MODULE_PT100
#define SENSOR_PT100 0
#endif
// Enable this module to use one of the following sensors: SENSOR_BMP280
#ifndef MODULE_BMP280
#define MODULE_BMP280 0
#endif
/***********************************
Supported Sensors
*/
enum supported_sensors {
#if MODULE_ANALOG_INPUT == 1
// Generic analog sensor, return a pin's analog value or its percentage
SENSOR_ANALOG_INPUT,
// LDR sensor, return the light level of an attached light resistor in percentage
SENSOR_LDR,
// Thermistor sensor, return the temperature based on the attached thermistor
SENSOR_THERMISTOR,
// ML8511 UV sensor
SENSOR_ML8511,
// Current sensor
SENSOR_ACS712,
// rain gauge sensor
SENSOR_RAIN_GAUGE,
// Rain sensor, return the percentage of rain from an attached analog sensor
SENSOR_RAIN,
// Soil moisture sensor, return the percentage of moisture from an attached analog sensor
SENSOR_SOIL_MOISTURE,
#endif
#if MODULE_DIGITAL_INPUT == 1
// Generic digital sensor, return a pin's digital value
SENSOR_DIGITAL_INPUT,
#endif
#if MODULE_DIGITAL_OUTPUT == 1
// Generic digital output sensor, allows setting the digital output of a pin to the requested value
SENSOR_DIGITAL_OUTPUT,
// Relay sensor, allows activating the relay
SENSOR_RELAY,
// Latching Relay sensor, allows activating the relay with a pulse
SENSOR_LATCHING_RELAY,
#endif
#if MODULE_DHT == 1
// DHT11/DHT22 sensors, return temperature/humidity based on the attached DHT sensor
SENSOR_DHT11,
SENSOR_DHT22,
#endif
#if MODULE_SHT21 == 1
// SHT21 sensor, return temperature/humidity based on the attached SHT21 sensor
SENSOR_SHT21,
SENSOR_HTU21D,
#endif
#if MODULE_SWITCH == 1
// Generic switch, wake up the board when a pin changes status
SENSOR_SWITCH,
// Door sensor, wake up the board and report when an attached magnetic sensor has been opened/closed
SENSOR_DOOR,
// Motion sensor, wake up the board and report when an attached PIR has triggered
SENSOR_MOTION,
#endif
#if MODULE_DS18B20 == 1
// DS18B20 sensor, return the temperature based on the attached sensor
SENSOR_DS18B20,
#endif
#if MODULE_BH1750 == 1
// BH1750 sensor, return light in lux
SENSOR_BH1750,
#endif
#if MODULE_MLX90614 == 1
// MLX90614 sensor, contactless temperature sensor
SENSOR_MLX90614,
#endif
#if MODULE_BME280 == 1
// BME280 sensor, return temperature, humidity and pressure
SENSOR_BME280,
#endif
#if MODULE_SONOFF == 1
// Sonoff wireless smart switch
SENSOR_SONOFF,
#endif
#if MODULE_BMP085 == 1
// BMP085/BMP180 sensor, return temperature and pressure
SENSOR_BMP085,
#endif
#if MODULE_HCSR04 == 1
// HC-SR04 sensor, return the distance between the sensor and an object
SENSOR_HCSR04,
#endif
#if MODULE_MCP9808 == 1
// MCP9808 sensor, precision temperature sensor
SENSOR_MCP9808,
#endif
#if MODULE_MQ == 1
// MQ2 air quality sensor
SENSOR_MQ,
#endif
#if MODULE_MHZ19 == 1
// MH-Z19 CO2 sensor
SENSOR_MHZ19,
#endif
#if MODULE_TSL2561 == 1
// TSL2561 sensor, return light in lux
SENSOR_TSL2561,
#endif
#if MODULE_AM2320 == 1
// AM2320 sensors, return temperature/humidity based on the attached AM2320 sensor
SENSOR_AM2320,
#endif
#if MODULE_PT100 == 1
// High temperature sensor associated with DFRobot Driver, return the temperature in C° from the attached PT100 sensor
SENSOR_PT100,
#endif
#if MODULE_BMP280 == 1
// BMP280 sensor, return temperature and pressure
SENSOR_BMP280,
#endif
};
/***********************************
Libraries
*/
// include supporting libraries
#ifdef MY_USE_UDP
#include <WiFiUdp.h>
#endif
#ifdef MY_GATEWAY_ESP8266
#include <ESP8266WiFi.h>
#endif
// include MySensors libraries
#include <core/MySensorsCore.h>
#include <core/MyCapabilities.h>
// include third party libraries
#if MODULE_DHT == 1
#include <DHT.h>
#endif
#if MODULE_SHT21 == 1
#include <Wire.h>
#include <Sodaq_SHT2x.h>
#endif
#if MODULE_DS18B20 == 1
#include <OneWire.h>
#include <DallasTemperature.h>
#endif
#if MODULE_BH1750 == 1
#include <BH1750.h>
#include <Wire.h>
#endif
#if MODULE_MLX90614 == 1
#include <Wire.h>
#include <Adafruit_MLX90614.h>
#endif
#if MODULE_BME280 == 1
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.h>
#endif
#if MODULE_SONOFF == 1
#include <Bounce2.h>
#endif
#if MODULE_BMP085 == 1
#include <Wire.h>
#include <Adafruit_BMP085.h>
#endif
#if MODULE_HCSR04 == 1
#include <NewPing.h>
#endif
#if MODULE_MCP9808 == 1
#include <Wire.h>
#include "Adafruit_MCP9808.h"
#endif
#if MODULE_MHZ19 == 1
#include <SoftwareSerial.h>
#endif
#if MODULE_AM2320 == 1
#include <Wire.h>
#include <AM2320.h>
#endif
#if MODULE_TSL2561 == 1
#include <TSL2561.h>
#include <Wire.h>
#endif
#if MODULE_PT100 == 1
#include <DFRobotHighTemperatureSensor.h>
#endif
#if MODULE_BMP280 == 1
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BMP280.h>
#endif
/*******************************************************************
Classes
*/
class NodeManager;
/*
PowerManager
*/
class PowerManager {
public:
PowerManager() {};
// to save battery the sensor can be optionally connected to two pins which will act as vcc and ground and activated on demand
void setPowerPins(int ground_pin, int vcc_pin, int wait_time = 50);
// turns the power pins on
void powerOn();
// turns the power pins on
void powerOff();
private:
int _vcc_pin = -1;
int _ground_pin = -1;
long _wait = 0;
};
/*
Timer
*/
class Timer {
public:
Timer(NodeManager* node_manager);
// start the timer which will be over when the configured target passes by
void start(int target, int unit);
void start();
// stop the timer
void stop();
// reset the timer
void reset();
// reset the timer and start over
void restart();
// set the timer configuration but do not start it
void set(int target, int unit);
void unset();
// update the timer. To be called at every cycle
void update();
// return true if the time is over
bool isOver();
// return true if the timer is running
bool isRunning();
// return true if the timer has been configured
bool isConfigured();
// return true if this is the first time the timer runs
bool isFirstRun();
// return the current elapsed time
float getElapsed();
private:
NodeManager* _node_manager;
int _target = 0;
long _elapsed = 0;
long _last_millis = 0;
bool _is_running = false;
bool _is_configured = false;
bool _first_run = true;
};
/*
Request
*/
class Request {
public:
Request(const char* string);
// return the parsed function
int getFunction();
// return the value as an int
int getValueInt();
// return the value as a float
float getValueFloat();
// return the value as a string
char* getValueString();
private:
NodeManager* _node_manager;
int _function;
char* _value;
};
/***************************************
Sensor: generic sensor class
*/
class Sensor {
public:
Sensor(NodeManager* node_manager, int child_id, int pin);
// [1] where the sensor is attached to (default: not set)
void setPin(int value);
int getPin();
// [2] child_id of this sensor (default: not set)
void setChildId(int value);
int getChildId();
// presentation of this sensor (default: S_CUSTOM)
void setPresentation(int value);
int getPresentation();
// [3] type of this sensor (default: V_CUSTOM)
void setType(int value);
int getType();
// [4] description of the sensor (default: '')
void setDescription(char *value);
// [5] For some sensors, the measurement can be queried multiple times and an average is returned (default: 1)
void setSamples(int value);
// [6] If more then one sample has to be taken, set the interval in milliseconds between measurements (default: 0)
void setSamplesInterval(int value);
// [7] if true will report the measure only if different than the previous one (default: false)
void setTrackLastValue(bool value);
// [9] if track last value is enabled, force to send an update after the configured number of minutes
void setForceUpdateMinutes(int value);
// [19] if track last value is enabled, force to send an update after the configured number of hours
void setForceUpdateHours(int value);
// [10] the value type of this sensor (default: TYPE_INTEGER)
void setValueType(int value);
int getValueType();
// [11] for float values, set the float precision (default: 2)
void setFloatPrecision(int value);
#if POWER_MANAGER == 1
// to save battery the sensor can be optionally connected to two pins which will act as vcc and ground and activated on demand
void setPowerPins(int ground_pin, int vcc_pin, int wait_time = 50);
// [12] if enabled the pins will be automatically powered on while awake and off during sleeping (default: true)
void setAutoPowerPins(bool value);
// [13] manually turn the power on
void powerOn();
// [14] manually turn the power off
void powerOff();
#endif
// get the latest recorded value from the sensor
int getValueInt();
float getValueFloat();
char* getValueString();
// [16] After how many minutes the sensor will report back its measure (default: 10 minutes)
void setReportIntervalMinutes(int value);
// [17] After how many minutes the sensor will report back its measure (default: 10 minutes)
void setReportIntervalSeconds(int value);
// return true if the report interval has been already configured
bool isReportIntervalConfigured();
// process a remote request
void process(Request & request);
// return the pin the interrupt is attached to
int getInterruptPin();
// listen for interrupts on the given pin so interrupt() will be called when occurring
void setInterrupt(int pin, int mode, int initial);
// define what to do at each stage of the sketch
virtual void before();
virtual void presentation();
virtual void setup();
virtual void loop(const MyMessage & message);
virtual void interrupt();
virtual void receive(const MyMessage & message);
// abstract functions, subclasses need to implement
virtual void onBefore() = 0;
virtual void onSetup() = 0;
virtual void onLoop() = 0;
virtual void onReceive(const MyMessage & message) = 0;
virtual void onProcess(Request & request) = 0;
virtual void onInterrupt() = 0;
protected:
MyMessage _msg;
MyMessage _msg_service;
NodeManager* _node_manager;
int _pin = -1;
int _child_id;
int _presentation = S_CUSTOM;
int _type = V_CUSTOM;
char* _description = "";
int _samples = 1;
int _samples_interval = 0;
bool _track_last_value = false;
int _value_type = TYPE_INTEGER;
int _float_precision = 2;
int _value_int = -1;
float _value_float = -1;
char * _value_string = "";
int _last_value_int = -1;
float _last_value_float = -1;
char * _last_value_string = "";
int _interrupt_pin = -1;
#if POWER_MANAGER == 1
PowerManager _powerManager;
bool _auto_power_pins = true;
#endif
Timer* _report_timer;
Timer* _force_update_timer;
void _send(MyMessage & msg);
bool _isReceive(const MyMessage & message);
bool _isWorthSending(bool comparison);
};
#if MODULE_ANALOG_INPUT == 1
/*
SensorAnalogInput: read the analog input of a configured pin
*/
class SensorAnalogInput: public Sensor {
public:
SensorAnalogInput(NodeManager* node_manager, int child_id, int pin);
// [101] the analog reference to use (default: not set, can be either INTERNAL or DEFAULT)
void setReference(int value);
// [102] reverse the value or the percentage (e.g. 70% -> 30%) (default: false)
void setReverse(bool value);
// [103] when true returns the value as a percentage (default: true)
void setOutputPercentage(bool value);
// [104] minimum value for calculating the percentage (default: 0)
void setRangeMin(int value);
// [105] maximum value for calculating the percentage (default: 1024)
void setRangeMax(int value);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
protected:
int _reference = -1;
bool _reverse = false;
bool _output_percentage = true;
int _range_min = 0;
int _range_max = 1024;
int _getPercentage(int value);
int _getAnalogRead();
};
/*
SensorLDR: return the percentage of light from a Light dependent resistor
*/
class SensorLDR: public SensorAnalogInput {
public:
SensorLDR(NodeManager* node_manager, int child_id, int pin);
};
/*
SensorThermistor: read the temperature from a thermistor
*/
class SensorThermistor: public Sensor {
public:
SensorThermistor(NodeManager* node_manager, int child_id, int pin);
// [101] resistance at 25 degrees C (default: 10000)
void setNominalResistor(long value);
// [102] temperature for nominal resistance (default: 25)
void setNominalTemperature(int value);
// [103] The beta coefficient of the thermistor (default: 3950)
void setBCoefficient(int value);
// [104] the value of the resistor in series with the thermistor (default: 10000)
void setSeriesResistor(long value);
// [105] set a temperature offset
void setOffset(float value);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
protected:
long _nominal_resistor = 10000;
int _nominal_temperature = 25;
int _b_coefficient = 3950;
long _series_resistor = 10000;
float _offset = 0;
};
/*
SensorML8511
*/
class SensorML8511: public Sensor {
public:
SensorML8511(NodeManager* node_manager, int child_id, int pin);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
protected:
float _mapfloat(float x, float in_min, float in_max, float out_min, float out_max);
};
/*
SensorACS712
*/
class SensorACS712: public Sensor {
public:
SensorACS712(NodeManager* node_manager, int child_id, int pin);
// [101] set how many mV are equivalent to 1 Amp. The value depends on the module (100 for 20A Module, 66 for 30A Module) (default: 185);
void setmVPerAmp(int value);
// [102] set ACS offset (default: 2500);
void setOffset(int value);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
protected:
int _ACS_offset = 2500;
int _mv_per_amp = 185;
};
/*
SensorRainGauge
*/
class SensorRainGauge: public Sensor {
public:
SensorRainGauge(NodeManager* node_manager, int child_id, int pin);
// [102] set how many mm of rain to count for each tip (default: 0.11)
void setSingleTip(float value);
// set initial value - internal pull up (default: HIGH)
void setInitialValue(int value);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
protected:
long _count = 0;
float _single_tip = 0.11;
int _initial_value = HIGH;
};
/*
SensorRain
*/
class SensorRain: public SensorAnalogInput {
public:
SensorRain(NodeManager* node_manager, int child_id, int pin);
};
/*
SensorSoilMoisture
*/
class SensorSoilMoisture: public SensorAnalogInput {
public:
SensorSoilMoisture(NodeManager* node_manager, int child_id, int pin);
};
#endif
#if MODULE_DIGITAL_INPUT == 1
/*
SensorDigitalInput: read the digital input of the configured pin
*/
class SensorDigitalInput: public Sensor {
public:
SensorDigitalInput(NodeManager* node_manager, int child_id, int pin);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
};
#endif
#if MODULE_DIGITAL_OUTPUT == 1
/*
SensorDigitalOutput: control a digital output of the configured pin
*/
class SensorDigitalOutput: public Sensor {
public:
SensorDigitalOutput(NodeManager* node_manager, int child_id, int pin);
// [103] define which value to set to the output when set to on (default: HIGH)
void setOnValue(int value);
// [104] when legacy mode is enabled expect a REQ message to trigger, otherwise the default SET (default: false)
void setLegacyMode(bool value);
// [105] automatically turn the output off after the given number of minutes
void setSafeguard(int value);
// [106] if true the input value becomes a duration in minutes after which the output will be automatically turned off (default: false)
void setInputIsElapsed(bool value);
// [107] optionally wait for the given number of milliseconds after changing the status (default: 0)
void setWaitAfterSet(int value);
// manually switch the output to the provided value
void setStatus(int value);
// get the current state
int getStatus();
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
protected:
int _on_value = HIGH;
int _status = OFF;
bool _legacy_mode = false;
bool _input_is_elapsed = false;
int _wait_after_set = 0;
Timer* _safeguard_timer;
void _setupPin(int pin);
virtual void _setStatus(int value);
int _getValueToWrite(int value);
};
/*
SensorRelay
*/
class SensorRelay: public SensorDigitalOutput {
public:
SensorRelay(NodeManager* node_manager, int child_id, int pin);
};
/*
SensorLatchingRelay
*/
class SensorLatchingRelay: public SensorRelay {
public:
SensorLatchingRelay(NodeManager* node_manager, int child_id, int pin);
// [201] set the duration of the pulse to send in ms to activate the relay (default: 50)
void setPulseWidth(int value);
// [202] set the pin which turns the relay off (default: the pin provided while registering the sensor)
void setPinOff(int value);
// [203] set the pin which turns the relay on (default: the pin provided while registering the sensor + 1)
void setPinOn(int value);
// define what to do at each stage of the sketch
void onBefore();
void onProcess(Request & request);
protected:
int _pin_on;
int _pin_off;
int _pulse_width = 50;
void _setStatus(int value);
};
#endif
/*
SensorDHT
*/
#if MODULE_DHT == 1
class SensorDHT: public Sensor {
public:
SensorDHT(NodeManager* node_manager, int child_id, int pin, DHT* dht, int sensor_type, int dht_type);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
// constants
const static int TEMPERATURE = 0;
const static int HUMIDITY = 1;
protected:
DHT* _dht;
int _dht_type;
float _offset = 0;
int _sensor_type = 0;
};
#endif
/*
SensorSHT21: temperature and humidity sensor
*/
#if MODULE_SHT21 == 1
class SensorSHT21: public Sensor {
public:
SensorSHT21(NodeManager* node_manager, int child_id, int sensor_type);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
// constants
const static int TEMPERATURE = 0;
const static int HUMIDITY = 1;
protected:
float _offset = 0;
int _sensor_type = 0;
};
/*
SensorHTU21D: temperature and humidity sensor
*/
class SensorHTU21D: public SensorSHT21 {
public:
SensorHTU21D(NodeManager* node_manager, int child_id, int pin);
};
#endif
/*
* SensorSwitch
*/
#if MODULE_SWITCH == 1
class SensorSwitch: public Sensor {
public:
SensorSwitch(NodeManager* node_manager, int child_id, int pin);
// [101] set the interrupt mode. Can be CHANGE, RISING, FALLING (default: CHANGE)
void setMode(int value);
// [102] milliseconds to wait before reading the input (default: 0)
void setDebounce(int value);
// [103] time to wait in milliseconds after a change is detected to allow the signal to be restored to its normal value (default: 0)
void setTriggerTime(int value);
// [104] Set initial value on the interrupt pin (default: HIGH)
void setInitial(int value);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
protected:
int _debounce = 0;
int _trigger_time = 0;
int _mode = CHANGE;
int _initial = HIGH;
};
/*
* SensorDoor
*/
class SensorDoor: public SensorSwitch {
public:
SensorDoor(NodeManager* node_manager, int child_id, int pin);
};
/*
* SensorMotion
*/
class SensorMotion: public SensorSwitch {
public:
SensorMotion(NodeManager* node_manager, int child_id, int pin);
};
#endif
/*
SensorDs18b20
*/
#if MODULE_DS18B20 == 1
class SensorDs18b20: public Sensor {
public:
SensorDs18b20(NodeManager* node_manager, int child_id, int pin, DallasTemperature* sensors, int index);
// returns the sensor's resolution in bits
int getResolution();
// [101] set the sensor's resolution in bits
void setResolution(int value);
// [102] sleep while DS18B20 calculates temperature (default: false)
void setSleepDuringConversion(bool value);
// return the sensors' device address
DeviceAddress* getDeviceAddress();
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
protected:
float _offset = 0;
int _index;
bool _sleep_during_conversion = false;
DallasTemperature* _sensors;
DeviceAddress _device_address;
};
#endif
/*
SensorBH1750
*/
#if MODULE_BH1750 == 1
class SensorBH1750: public Sensor {
public:
SensorBH1750(NodeManager* node_manager, int child_id);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
protected:
BH1750* _lightSensor;
};
#endif
/*
SensorMLX90614
*/
#if MODULE_MLX90614 == 1
class SensorMLX90614: public Sensor {
public:
SensorMLX90614(NodeManager* node_manager, int child_id, Adafruit_MLX90614* mlx, int sensor_type);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
// constants
const static int TEMPERATURE_AMBIENT = 0;
const static int TEMPERATURE_OBJECT = 1;
protected:
Adafruit_MLX90614* _mlx;
int _sensor_type;
};
#endif
/*
* SensorBosch
*/
#if MODULE_BME280 == 1 || MODULE_BMP085 == 1 || MODULE_BMP280 == 1
class SensorBosch: public Sensor {
public:
SensorBosch(NodeManager* node_manager, int child_id, int sensor_type);
// [101] define how many pressure samples to keep track of for calculating the forecast (default: 5)
void setForecastSamplesCount(int value);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
// constants
const static int TEMPERATURE = 0;
const static int HUMIDITY = 1;
const static int PRESSURE = 2;
const static int FORECAST = 3;
static uint8_t GetI2CAddress(uint8_t chip_id);
protected:
int _sensor_type;
char* _weather[6] = { "stable", "sunny", "cloudy", "unstable", "thunderstorm", "unknown" };
int _forecast_samples_count = 5;
float* _forecast_samples;
int _minute_count = 0;
float _pressure_avg;
float _pressure_avg2;
float _dP_dt;
bool _first_round = true;
float _getLastPressureSamplesAverage();
void _forecast(float pressure);
};
#endif
/*
SensorBME280
*/
#if MODULE_BME280 == 1
class SensorBME280: public SensorBosch {
public:
SensorBME280(NodeManager* node_manager, int child_id, Adafruit_BME280* bme, int sensor_type);
void onLoop();
protected:
Adafruit_BME280* _bme;
};
#endif
/*
SensorBMP085
*/
#if MODULE_BMP085 == 1
class SensorBMP085: public SensorBosch {
public:
SensorBMP085(NodeManager* node_manager, int child_id, Adafruit_BMP085* bmp, int sensor_type);
void onLoop();
protected:
Adafruit_BMP085* _bmp;
};
#endif
/*
SensorBMP280
*/
#if MODULE_BMP280 == 1
class SensorBMP280: public SensorBosch {
public:
SensorBMP280(NodeManager* node_manager, int child_id, Adafruit_BMP280* bmp, int sensor_type);
void onLoop();
protected:
Adafruit_BMP280* _bmp;
};
#endif
/*
SensorHCSR04
*/
#if MODULE_HCSR04 == 1
class SensorHCSR04: public Sensor {
public:
SensorHCSR04(NodeManager* node_manager, int child_id, int pin);
// [101] Arduino pin tied to trigger pin on the ultrasonic sensor (default: the pin set while registering the sensor)
void setTriggerPin(int value);
// [102] Arduino pin tied to echo pin on the ultrasonic sensor (default: the pin set while registering the sensor)
void setEchoPin(int value);
// [103] Maximum distance we want to ping for (in centimeters) (default: 300)
void setMaxDistance(int value);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
protected:
int _trigger_pin;
int _echo_pin;
int _max_distance = 300;
NewPing* _sonar;
};
#endif
/*
SensorSonoff
*/
#if MODULE_SONOFF == 1
class SensorSonoff: public Sensor {
public:
SensorSonoff(NodeManager* node_manager, int child_id);
// [101] set the button's pin (default: 0)
void setButtonPin(int value);
// [102] set the relay's pin (default: 12)
void setRelayPin(int value);
// [103] set the led's pin (default: 13)
void setLedPin(int value);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
protected:
Bounce _debouncer = Bounce();
int _button_pin = 0;
int _relay_pin = 12;
int _led_pin = 13;
int _old_value = 0;
bool _state = false;
int _relay_on = 1;
int _relay_off = 0;
int _led_on = 0;
int _led_off = 1;
void _blink();
void _toggle();
};
#endif
/*
SensorMCP9808
*/
#if MODULE_MCP9808 == 1
class SensorMCP9808: public Sensor {
public:
SensorMCP9808(NodeManager* node_manager, int child_id, Adafruit_MCP9808* mcp);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
protected:
Adafruit_MCP9808* _mcp;
};
#endif
/*
SensorMQ
*/
#if MODULE_MQ == 1
class SensorMQ: public Sensor {
public:
SensorMQ(NodeManager* node_manager, int child_id, int pin);
// [101] define the target gas whose ppm has to be returned. 0: LPG, 1: CO, 2: Smoke (default: 1);
void setTargetGas(int value);
// [102] define the load resistance on the board, in kilo ohms (default: 1);
void setRlValue(float value);
// [103] define the Ro resistance on the board (default: 10000);
void setRoValue(float value);
// [104] Sensor resistance in clean air (default: 9.83);
void setCleanAirFactor(float value);
// [105] define how many samples you are going to take in the calibration phase (default: 50);
void setCalibrationSampleTimes(int value);
// [106] define the time interal(in milisecond) between each samples in the cablibration phase (default: 500);
void setCalibrationSampleInterval(int value);
// [107] define how many samples you are going to take in normal operation (default: 50);
void setReadSampleTimes(int value);
// [108] define the time interal(in milisecond) between each samples in the normal operations (default: 5);
void setReadSampleInterval(int value);
// set the LPGCurve array (default: {2.3,0.21,-0.47})
void setLPGCurve(float *value);
// set the COCurve array (default: {2.3,0.72,-0.34})
void setCOCurve(float *value);
// set the SmokeCurve array (default: {2.3,0.53,-0.44})
void setSmokeCurve(float *value);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
void onInterrupt();
protected:
float _rl_value = 1.0;
float _ro_clean_air_factor = 9.83;
int _calibration_sample_times = 50;
int _calibration_sample_interval = 500;
int _read_sample_interval = 50;
int _read_sample_times = 5;
float _ro = 10000.0;
static float _default_LPGCurve[3];
static float _default_COCurve[3];
static float _default_SmokeCurve[3];
float *_LPGCurve;
float *_COCurve;
float *_SmokeCurve;
float _MQResistanceCalculation(int raw_adc);
float _MQCalibration();
float _MQRead();
int _MQGetGasPercentage(float rs_ro_ratio, int gas_id);
int _MQGetPercentage(float rs_ro_ratio, float *pcurve);
const static int _gas_lpg = 0;
const static int _gas_co = 1;
const static int _gas_smoke = 2;
int _target_gas = _gas_co;
};
#endif
/*
SensorMHZ19
*/
#if MODULE_MHZ19 == 1
class SensorMHZ19: public Sensor {
public:
SensorMHZ19(NodeManager* node_manager, int child_id, int pin);
// set the pins for RX and TX of the SoftwareSerial (default: Rx=6, Tx=7)
void setRxTx(int rxpin, int txpin);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
int readCO2();
protected:
SoftwareSerial* _ser;
int _tx_pin = 6;
int _rx_pin = 7;
};
#endif
/*
SensorAM2320
*/
#if MODULE_AM2320 == 1
class SensorAM2320: public Sensor {
public:
SensorAM2320(NodeManager* node_manager, int child_id, AM2320* th, int sensor_type);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
// constants
const static int TEMPERATURE = 0;
const static int HUMIDITY = 1;
protected:
AM2320* _th;
int _sensor_type = 0;
};
#endif
/*
SensorTSL2561
*/
#if MODULE_TSL2561 == 1
class SensorTSL2561: public Sensor {
public:
SensorTSL2561(NodeManager* node_manager, int child_id);
// [101] set the gain, possible values are SensorTSL2561::GAIN_0X (0), SensorTSL2561::GAIN_16X (1) (default 16x)
void setGain(int value);
// [102] set the timing, possible values are SensorTSL2561::INTEGRATIONTIME_13MS (0), SensorTSL2561::INTEGRATIONTIME_101MS (1), SensorTSL2561::INTEGRATIONTIME_402MS (2) (default: 13ms)
void setTiming(int value);
// [103] set the spectrum, possible values are SensorTSL2561::VISIBLE (0), SensorTSL2561::FULLSPECTRUM (1), SensorTSL2561::INFRARED (2), SensorTSL2561::FULL (3) (default: visible)
void setSpectrum(int value);
// [104] set the i2c address values are SensorTSL2561::ADDR_FLOAT, SensorTSL2561::ADDR_LOW, SensorTSL2561::ADDR_HIGH
void setAddress(int value);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
// constants
const static int ADDR_FLOAT = 0;
const static int ADDR_LOW = 1;
const static int ADDR_HIGH = 2;
const static int GAIN_0X = 0;
const static int GAIN_16X = 1;
const static int INTEGRATIONTIME_13MS = 0;
const static int INTEGRATIONTIME_101MS = 1;
const static int INTEGRATIONTIME_402MS = 2;
const static int VISIBLE = 0;
const static int FULLSPECTRUM = 1;
const static int INFRARED = 2;
const static int FULL = 3;
protected:
TSL2561* _tsl;
int _tsl_address = 0;
int _tsl_gain = 1;
int _tsl_timing = 0;
int _tsl_spectrum = 0;
};
#endif
/*
SensorPT100
*/
#if MODULE_PT100 == 1
class SensorPT100: public Sensor {
public:
SensorPT100(NodeManager* node_manager, int child_id, int pin);
// [101] set the voltageRef used to compare with analog measures
void setVoltageRef(float value);
// define what to do at each stage of the sketch
void onBefore();
void onSetup();
void onLoop();
void onReceive(const MyMessage & message);
void onProcess(Request & request);
protected:
DFRobotHighTemperature* _PT100;
float _voltageRef = 3.3;
};
#endif
/***************************************
NodeManager: manages all the aspects of the node
*/
class NodeManager {
public:
NodeManager();
// [10] send the same service message multiple times (default: 1)
void setRetries(int value);
int getRetries();
#if BATTERY_MANAGER == 1
// [11] the expected vcc when the batter is fully discharged, used to calculate the percentage (default: 2.7)
void setBatteryMin(float value);
// [12] the expected vcc when the batter is fully charged, used to calculate the percentage (default: 3.3)
void setBatteryMax(float value);
// [14] after how many minutes report the battery level to the controller. When reset the battery is always reported (default: 60)
void setBatteryReportMinutes(int value);
// [15] if true, the battery level will be evaluated by measuring the internal vcc without the need to connect any pin, if false the voltage divider methon will be used (default: true)
void setBatteryInternalVcc(bool value);
// [16] if setBatteryInternalVcc() is set to false, the analog pin to which the battery's vcc is attached (https://www.mysensors.org/build/battery) (default: -1)
void setBatteryPin(int value);
// [17] if setBatteryInternalVcc() is set to false, the volts per bit ratio used to calculate the battery voltage (default: 0.003363075)
void setBatteryVoltsPerBit(float value);
// [18] If true, wake up by an interrupt counts as a valid cycle for battery reports otherwise only uninterrupted sleep cycles would contribute (default: true)
void setBatteryReportWithInterrupt(bool value);
// [2] Send a battery level report to the controller
void batteryReport();
#endif
// [3] set the duration (in seconds) of a sleep cycle
void setSleepSeconds(int value);
long getSleepSeconds();
// [4] set the duration (in minutes) of a sleep cycle
void setSleepMinutes(int value);
// [5] set the duration (in hours) of a sleep cycle
void setSleepHours(int value);
// [29] set the duration (in days) of a sleep cycle
void setSleepDays(int value);
// [19] if enabled, when waking up from the interrupt, the board stops sleeping. Disable it when attaching e.g. a motion sensor (default: true)
void setSleepInterruptPin(int value);
// configure the interrupt pin and mode. Mode can be CHANGE, RISING, FALLING (default: MODE_NOT_DEFINED)
void setInterrupt(int pin, int mode, int initial = -1);
// [28] ignore two consecutive interrupts if happening within this timeframe in milliseconds (default: 100)
void setInterruptMinDelta(long value);
// [20] optionally sleep interval in milliseconds before sending each message to the radio network (default: 0)
void setSleepBetweenSend(int value);
int getSleepBetweenSend();
// register a built-in sensor
int registerSensor(int sensor_type, int pin = -1, int child_id = -1);
// register a custom sensor
int registerSensor(Sensor* sensor);
// [26] un-register a sensor
void unRegisterSensor(int sensor_index);
// return a sensor by its index
Sensor* get(int sensor_index);
Sensor* getSensor(int sensor_index);
// assign a different child id to a sensor
bool renameSensor(int old_child_id, int new_child_id);
#if POWER_MANAGER == 1
// to save battery the sensor can be optionally connected to two pins which will act as vcc and ground and activated on demand
void setPowerPins(int ground_pin, int vcc_pin, int wait_time = 50);
// [23] if enabled the pins will be automatically powered on while awake and off during sleeping (default: true)
void setAutoPowerPins(bool value);
// [24] manually turn the power on
void powerOn();
// [25] manually turn the power off
void powerOff();
#endif
// [21] set this to true if you want destination node to send ack back to this node (default: false)
void setAck(bool value);
bool getAck();
// request and return the current timestamp from the controller
long getTimestamp();
// Request the controller's configuration on startup (default: true)
void setGetControllerConfig(bool value);
// [22] Manually set isMetric setting
void setIsMetric(bool value);
bool getIsMetric();
// Convert a temperature from celsius to fahrenheit depending on how isMetric is set
float celsiusToFahrenheit(float temperature);
// return true if sleep or wait is configured and hence this is a sleeping node
bool isSleepingNode();
// [1] Send a hello message back to the controller
void hello();
// [6] reboot the board
void reboot();
// [8] send NodeManager's the version back to the controller
void version();
// [7] clear the EEPROM
void clearEeprom();
// [9] wake up the board
void wakeup();
// process a remote request
void process(Request & request);
// return the value stored at the requested index from the EEPROM
int loadFromMemory(int index);
// [27] save the given index of the EEPROM the provided value
void saveToMemory(int index, int value);
// return vcc in V
float getVcc();
// setup the configured interrupt pins
void setupInterrupts();
// return the pin from which the last interrupt came
int getLastInterruptPin();
// set the default interval in minutes all the sensors will report their measures.
// If the same function is called on a specific sensor, this will not change the previously set value
// For sleeping sensors, the elapsed time can be evaluated only upon wake up (default: 10 minutes)
void setReportIntervalMinutes(int value);
void setReportIntervalSeconds(int value);
// [30] if set and when the board is battery powered, sleep() is always called instead of wait() (default: true)
void setSleepOrWait(bool value);
// sleep if the node is a battery powered or wait if it is not for the given number of milliseconds
void sleepOrWait(long value);
// [31] set which pin is connected to RST of the board to reboot the board when requested. If not set the software reboot is used instead (default: -1)
void setRebootPin(int value);
// [32] turn the ADC off so to save 0.2 mA
void setADCOff();
// hook into the main sketch functions
void before();
void presentation();
void setup();
void loop();
void receive(const MyMessage & msg);
void receiveTime(unsigned long ts);
// handle interrupts
static void _onInterrupt_1();
static void _onInterrupt_2();
private:
#if BATTERY_MANAGER == 1
float _battery_min = 2.6;
float _battery_max = 3.3;
Timer _battery_report_timer = Timer(this);
bool _battery_report_with_interrupt = true;
bool _battery_internal_vcc = true;
int _battery_pin = -1;
float _battery_volts_per_bit = 0.003363075;
#endif
#if POWER_MANAGER == 1
// to optionally controller power pins
PowerManager _powerManager;
bool _auto_power_pins = true;
#endif
MyMessage _msg;
void _send(MyMessage & msg);
int _status = AWAKE;
long _sleep_time = 0;
int _sleep_interrupt_pin = -1;
int _sleep_between_send = 0;
int _retries = 1;
int _interrupt_1_mode = MODE_NOT_DEFINED;
int _interrupt_2_mode = MODE_NOT_DEFINED;
int _interrupt_1_initial = -1;
int _interrupt_2_initial = -1;
static int _last_interrupt_pin;
static long _interrupt_min_delta;
static long _last_interrupt_1;
static long _last_interrupt_2;
long _timestamp = -1;
Sensor* _sensors[MAX_SENSORS+1] = {0};
bool _ack = false;
void _sleep();
void _present(int child_id, int type);
int _getAvailableChildId();
int _getInterruptInitialValue(int mode);
bool _get_controller_config = true;
int _is_metric = 1;
int _report_interval_seconds = 10*60;
bool _sleep_or_wait = true;
int _reboot_pin = -1;
void _loadConfig();
void _saveConfig();
};
#endif