NodeManager.cpp 54.9 KB
Newer Older
DV's avatar
DV committed
1
2
3
4
5
6
/*
 * NodeManager
 */

#include "NodeManager.h"

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/***************************************
   Global functions
*/

// return vcc in V
float getVcc() {
  // Measure Vcc against 1.1V Vref
  #if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
    ADMUX = (_BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1));
  #elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
    ADMUX = (_BV(MUX5) | _BV(MUX0));
  #elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
    ADMUX = (_BV(MUX3) | _BV(MUX2));
  #else
    ADMUX = (_BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1));
  #endif
  // Vref settle
  delay(70);
  // Do conversion
  ADCSRA |= _BV(ADSC);
  while (bit_is_set(ADCSRA, ADSC)) {};
  // return Vcc in mV
  return (float)((1125300UL) / ADC) / 1000;
}
DV's avatar
DV committed
31
32
33
34
35
36

/***************************************
   PowerManager
*/

// set the vcc and ground pin the sensor is connected to
user2684's avatar
user2684 committed
37
void PowerManager::setPowerPins(int ground_pin, int vcc_pin, int wait_time) {
DV's avatar
DV committed
38
  #if DEBUG == 1
39
    Serial.print(F("PWR G="));
DV's avatar
DV committed
40
    Serial.print(ground_pin);
41
    Serial.print(F(" V="));
DV's avatar
DV committed
42
    Serial.println(vcc_pin);
DV's avatar
DV committed
43
  #endif
user2684's avatar
user2684 committed
44
  // configure the vcc pin as output and initialize to high (power on)
DV's avatar
DV committed
45
46
  _vcc_pin = vcc_pin;
  pinMode(_vcc_pin, OUTPUT);
user2684's avatar
user2684 committed
47
  digitalWrite(_vcc_pin, HIGH);
DV's avatar
DV committed
48
49
50
51
  // configure the ground pin as output and initialize to low
  _ground_pin = ground_pin;
  pinMode(_ground_pin, OUTPUT);
  digitalWrite(_ground_pin, LOW);
user2684's avatar
user2684 committed
52
  _wait = wait_time;
DV's avatar
DV committed
53
54
55
}

// return true if power pins have been configured
user2684's avatar
user2684 committed
56
bool PowerManager::isConfigured() {
DV's avatar
DV committed
57
58
59
60
61
62
  if (_vcc_pin != -1 && _ground_pin != -1) return true;
  return false;
}

// turn on the sensor by activating its power pins
void PowerManager::powerOn() {
user2684's avatar
user2684 committed
63
  if (! isConfigured()) return;
DV's avatar
DV committed
64
  #if DEBUG == 1
65
    Serial.print(F("ON P="));
DV's avatar
DV committed
66
67
68
69
70
    Serial.println(_vcc_pin);
  #endif
  // power on the sensor by turning high the vcc pin
  digitalWrite(_vcc_pin, HIGH);
  // wait a bit for the device to settle down
71
  if (_wait > 0) wait(_wait);
DV's avatar
DV committed
72
73
74
75
}

// turn off the sensor
void PowerManager::powerOff() {
user2684's avatar
user2684 committed
76
  if (! isConfigured()) return;
DV's avatar
DV committed
77
  #if DEBUG == 1
78
    Serial.print(F("OFF P="));
DV's avatar
DV committed
79
80
81
82
83
84
    Serial.println(_vcc_pin);
  #endif
  // power off the sensor by turning low the vcc pin
  digitalWrite(_vcc_pin, LOW);
}

85

DV's avatar
DV committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/******************************************
    Sensors
*/

/*
   Sensor class
*/
// constructor
Sensor::Sensor(int child_id, int pin) {
  _child_id = child_id;
  _pin = pin;
  _msg = MyMessage(_child_id, _type);
}

// setter/getter
void Sensor::setPin(int value) {
  _pin = value;
}
int Sensor::getPin() {
  return _pin;
}
void Sensor::setChildId(int value) {
  _child_id = value;
}
int Sensor::getChildId() {
  return _child_id;
}
void Sensor::setPresentation(int value) {
  _presentation = value;
}
int Sensor::getPresentation() {
  return _presentation;
}
void Sensor::setType(int value) {
  _type = value;
  _msg.setType(_type);
}
int Sensor::getType() {
  return _type;
}
void Sensor::setRetries(int value) {
  _retries = value;
}
void Sensor::setSamples(int value) {
  _samples = value;
}
void Sensor::setSamplesInterval(int value) {
  _samples_interval = value;
}
void Sensor::setTackLastValue(bool value) {
  _track_last_value = value;
}
void Sensor::setForceUpdate(int value) {
  _force_update = value;
}
void Sensor::setValueType(int value) {
  _value_type = value;
}
void Sensor::setFloatPrecision(int value) {
  _float_precision = value;
}
#if POWER_MANAGER == 1
user2684's avatar
user2684 committed
148
149
    void Sensor::setPowerPins(int ground_pin, int vcc_pin, int wait_time) {
      _powerManager.setPowerPins(ground_pin, vcc_pin, wait_time);
DV's avatar
DV committed
150
    }
DV's avatar
DV committed
151
152
153
    void Sensor::setAutoPowerPins(bool value) {
      _auto_power_pins = value;
    }
DV's avatar
DV committed
154
155
156
157
158
159
160
    void Sensor::powerOn() {
      _powerManager.powerOn();
    }
    void Sensor::powerOff() {
      _powerManager.powerOff();
    }
#endif
DV's avatar
DV committed
161
162
163
void Sensor::setSleepBetweenSend(int value) {
  _sleep_between_send = value;
}
DV's avatar
DV committed
164
165
166
167

// present the sensor to the gateway and controller
void Sensor::presentation() {
  #if DEBUG == 1
168
    Serial.print(F("PRES I="));
DV's avatar
DV committed
169
    Serial.print(_child_id);
170
    Serial.print(F(" T="));
DV's avatar
DV committed
171
172
173
174
175
176
177
178
179
180
181
    Serial.println(_presentation);
  #endif
  present(_child_id, _presentation);
}

// call the sensor-specific implementation of before
void Sensor::before() {
  if (_pin == -1) return;
  onBefore();
}

user2684's avatar
user2684 committed
182
183
184
185
186
187
// call the sensor-specific implementation of setup
void Sensor::setup() {
  if (_pin == -1) return;
  onSetup();
}

DV's avatar
DV committed
188
189
190
191
192
// call the sensor-specific implementation of loop
void Sensor::loop(const MyMessage & message) {
  if (_pin == -1) return;
  #if POWER_MANAGER == 1
    // turn the sensor on
DV's avatar
DV committed
193
    if (_auto_power_pins) powerOn();
DV's avatar
DV committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
  #endif
  // for numeric sensor requiring multiple samples, keep track of the total
  float total = 0;
  // keep track of the number of cycles since the last update
  _cycles++;
  // collect multiple samples if needed
  for (int i = 0; i < _samples; i++) {
    // call the sensor-specific implementation of the main task which will store the result in the _value variable
    if (message.sender == 0 && message.sensor == 0 && message.getCommand() == 0 && message.type == 0) {
      // empty message, we'be been called from loop()
      onLoop();
    }
    else {
      // we've been called from receive(), pass the message along
      onReceive(message);
    }
    // for integers and floats, keep track of the total
    if (_value_type == TYPE_INTEGER) total += (float)_value_int;
    else if (_value_type == TYPE_FLOAT) total += _value_float;
    // wait between samples
214
    if (_samples_interval > 0) wait(_samples_interval);
DV's avatar
DV committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
  }
  // process the result and send a response back. 
  if (_value_type == TYPE_INTEGER && total > -1) {
    // if the value is an integer, calculate the average value of the samples
    int avg = (int) (total / _samples);
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && avg != _last_value_int) || (_track_last_value && _force_update > 0 && _cycles > _force_update)) {
      _cycles = 0;
      _last_value_int = avg;
      _send(_msg.set(avg));
    }
  }
  // process a float value
  else if (_value_type == TYPE_FLOAT && total > -1) {
    // calculate the average value of the samples
    float avg = total / _samples;
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && avg != _last_value_float) || (_track_last_value && _cycles >= _force_update)) {
      _cycles = 0;
      _last_value_float = avg;
      _send(_msg.set(avg, _float_precision));
    }
  }
  // process a string value
  else if (_value_type == TYPE_STRING) {
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && strcmp(_value_string, _last_value_string) != 0) || (_track_last_value && _cycles >= _force_update)) {
      _cycles = 0;
      _last_value_string = _value_string;
      _send(_msg.set(_value_string));
    }
  }
  // turn the sensor off
  #if POWER_MANAGER == 1
DV's avatar
DV committed
249
    if (_auto_power_pins) powerOff();
DV's avatar
DV committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
  #endif
}

// receive a message from the radio network
void Sensor::receive(const MyMessage &message) {
  // return if not for this sensor
  if (message.sensor != _child_id || message.type != _type) return;
  // a request would make the sensor executing its main task
  loop(message);
}

// send a message to the network
void Sensor::_send(MyMessage & message) {
  // send the message, multiple times if requested
  for (int i = 0; i < _retries; i++) {
DV's avatar
DV committed
265
    // if configured, sleep beetween each send
266
    if (_sleep_between_send > 0) wait(_sleep_between_send);
DV's avatar
DV committed
267
    #if DEBUG == 1
268
      Serial.print(F("SEND D="));
DV's avatar
DV committed
269
      Serial.print(message.destination);
270
      Serial.print(F(" I="));
DV's avatar
DV committed
271
      Serial.print(message.sensor);
272
      Serial.print(F(" C="));
DV's avatar
DV committed
273
      Serial.print(message.getCommand());
274
      Serial.print(F(" T="));
DV's avatar
DV committed
275
      Serial.print(message.type);
276
      Serial.print(F(" S="));
DV's avatar
DV committed
277
      Serial.print(message.getString());
278
      Serial.print(F(" N="));
DV's avatar
DV committed
279
      Serial.print(message.getInt());
280
      Serial.print(F(" F="));
DV's avatar
DV committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
      Serial.println(message.getFloat());
    #endif
    send(message);
  }
}

/*
   SensorAnalogInput
*/

// contructor
SensorAnalogInput::SensorAnalogInput(int child_id, int pin): Sensor(child_id, pin) {
}

// setter/getter
void SensorAnalogInput::setReference(int value) {
  _reference = value;
}
void SensorAnalogInput::setReverse(bool value) {
  _reverse = value;
}
void SensorAnalogInput::setOutputPercentage(bool value) {
  _output_percentage = value;
}
void SensorAnalogInput::setRangeMin(int value) {
  _range_min = value;
}
void SensorAnalogInput::setRangeMax(int value) {
  _range_max = value;
}

user2684's avatar
user2684 committed
312
// what do to during before
DV's avatar
DV committed
313
314
315
316
317
void SensorAnalogInput::onBefore() {
  // prepare the pin for input
  pinMode(_pin, INPUT);
}

user2684's avatar
user2684 committed
318
319
320
321
// what do to during setup
void SensorAnalogInput::onSetup() {
}

DV's avatar
DV committed
322
323
324
325
326
327
328
329
// what do to during loop
void SensorAnalogInput::onLoop() {
  // read the input
  int adc = _getAnalogRead();
  // calculate the percentage
  int percentage = 0;
  if (_output_percentage) percentage = _getPercentage(adc);
  #if DEBUG == 1
330
    Serial.print(F("A-IN I="));
DV's avatar
DV committed
331
    Serial.print(_child_id);
332
    Serial.print(F(" V="));
DV's avatar
DV committed
333
    Serial.print(adc);
334
    Serial.print(F(" %="));
DV's avatar
DV committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    Serial.println(percentage);
  #endif
  // store the result
  _value_int = _output_percentage ? percentage : adc;
}

// what do to during loop
void SensorAnalogInput::onReceive(const MyMessage & message) {
  onLoop();
}

// read the analog input
int SensorAnalogInput::_getAnalogRead() {
  // set the reference
  if (_reference != -1) {
    analogReference(_reference);
351
    wait(100);
DV's avatar
DV committed
352
353
354
355
356
357
358
359
360
361
  }
  // read and return the value
  int value = analogRead(_pin);
  if (_reverse) value = _range_max - value;
  return value;
}

// return a percentage from an analog value
int SensorAnalogInput::_getPercentage(int adc) {
  float value = (float)adc;
DV's avatar
DV committed
362
363
  // restore the original value
  if (_reverse) value = 1024 - value;
DV's avatar
DV committed
364
365
  // scale the percentage based on the range provided
  float percentage = ((value - _range_min) / (_range_max - _range_min)) * 100;
DV's avatar
DV committed
366
  if (_reverse) percentage = 100 - percentage;
DV's avatar
DV committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
  if (percentage > 100) percentage = 100;
  if (percentage < 0) percentage = 0;
  return (int)percentage;
}

/*
   SensorLDR
*/

// contructor
SensorLDR::SensorLDR(int child_id, int pin): SensorAnalogInput(child_id, pin) {
  // set presentation and type and reverse (0: no light, 100: max light)
  setPresentation(S_LIGHT_LEVEL);
  setType(V_LIGHT_LEVEL);
  setReverse(true);
}

/*
   SensorThermistor
*/

// contructor
SensorThermistor::SensorThermistor(int child_id, int pin): Sensor(child_id, pin) {
  // set presentation, type and value type
  setPresentation(S_TEMP);
  setType(V_TEMP);
  setValueType(TYPE_FLOAT);
}

// setter/getter
397
void SensorThermistor::setNominalResistor(long value) {
DV's avatar
DV committed
398
399
400
401
402
403
404
405
  _nominal_resistor = value;
}
void SensorThermistor::setNominalTemperature(int value) {
  _nominal_temperature = value;
}
void SensorThermistor::setBCoefficient(int value) {
  _b_coefficient = value;
}
406
void SensorThermistor::setSeriesResistor(long value) {
DV's avatar
DV committed
407
408
409
410
411
412
  _series_resistor = value;
}
void SensorThermistor::setOffset(float value) {
  _offset = value;
}

user2684's avatar
user2684 committed
413
// what do to during before
DV's avatar
DV committed
414
415
416
417
418
void SensorThermistor::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

user2684's avatar
user2684 committed
419
420
421
422
// what do to during setup
void SensorThermistor::onSetup() {
}

DV's avatar
DV committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
// what do to during loop
void SensorThermistor::onLoop() {
  // read the voltage across the thermistor
  float adc = analogRead(_pin);
  // calculate the temperature
  float reading = (1023 / adc)  - 1;
  reading = _series_resistor / reading;
  float temperature;
  temperature = reading / _nominal_resistor;     // (R/Ro)
  temperature = log(temperature);                  // ln(R/Ro)
  temperature /= _b_coefficient;                   // 1/B * ln(R/Ro)
  temperature += 1.0 / (_nominal_temperature + 273.15); // + (1/To)
  temperature = 1.0 / temperature;                 // Invert
  temperature -= 273.15;                         // convert to C
  if (! getControllerConfig().isMetric) temperature = temperature * 1.8 + 32;
  #if DEBUG == 1
439
    Serial.print(F("THER I="));
DV's avatar
DV committed
440
    Serial.print(_child_id);
441
    Serial.print(F(" V="));
DV's avatar
DV committed
442
    Serial.print(adc);
443
    Serial.print(F(" T="));
444
    Serial.print(temperature);
445
    Serial.print(F(" M="));
DV's avatar
DV committed
446
447
448
449
450
451
452
453
454
455
456
    Serial.println(getControllerConfig().isMetric);
  #endif
  // store the value
  _value_float = temperature;
}

// what do to as the main task when receiving a message
void SensorThermistor::onReceive(const MyMessage & message) {
  onLoop();
}

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

/*
   SensorML8511
*/

// contructor
SensorML8511::SensorML8511(int child_id, int pin): Sensor(child_id, pin) {
  // set presentation, type and value type
  setPresentation(S_UV);
  setType(V_UV);
  setValueType(TYPE_FLOAT);
}

// what do to during before
void SensorML8511::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

// what do to during setup
void SensorML8511::onSetup() {
  onLoop();
}

// what do to during loop
void SensorML8511::onLoop() {
  // read the voltage 
  int uvLevel = analogRead(_pin);
  int refLevel = getVcc()*1024/3.3;
  //Use the 3.3V power pin as a reference to get a very accurate output value from sensor
  float outputVoltage = 3.3 / refLevel * uvLevel;
  //Convert the voltage to a UV intensity level
  float uvIntensity = _mapfloat(outputVoltage, 0.99, 2.8, 0.0, 15.0); 
  #if DEBUG == 1
    Serial.print(F("UV I="));
    Serial.print(_child_id);
    Serial.print(F(" V="));
    Serial.print(outputVoltage);
    Serial.print(F(" I="));
    Serial.println(uvIntensity);
  #endif
  // store the value
  _value_float = uvIntensity;
}

// what do to as the main task when receiving a message
void SensorML8511::onReceive(const MyMessage & message) {
  onLoop();
}

// The Arduino Map function but for floats
float SensorML8511::_mapfloat(float x, float in_min, float in_max, float out_min, float out_max) {
  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}

/*
 * SensorMQ
 */
SensorMQ::SensorMQ(int child_id, int pin): Sensor(child_id,pin) {
  setPresentation(S_AIR_QUALITY);
  setType(V_LEVEL);
}

//setter/getter
void SensorMQ::setRlValue(float value) {
  _rl_value = value;
}
void SensorMQ::setRoValue(float value) {
  _ro = value;
}
void SensorMQ::setCleanAirFactor(float value) {
  _ro_clean_air_factor = value;
}
void SensorMQ::setCalibrationSampleTimes(int value) {
  _calibration_sample_times = value;
}
void SensorMQ::setCalibrationSampleInterval(int value){
  _calibration_sample_interval = value;
}
void SensorMQ::setReadSampleTimes(int value) {
  _read_sample_times = value;
}
void SensorMQ::setReadSampleInterval(int value) {
  _read_sample_interval = value;
}
void SensorMQ::setLPGCurve(float *value) {
  _LPGCurve[0] = value[0];
  _LPGCurve[2] = value[1];
  _LPGCurve[2] = value[2];
}
void SensorMQ::setCOCurve(float *value) {
  _COCurve[0] = value[0];
  _COCurve[2] = value[1];
  _COCurve[2] = value[2];
}
void SensorMQ::setSmokeCurve(float *value) {
  _SmokeCurve[0] = value[0];
  _SmokeCurve[2] = value[1];
  _SmokeCurve[2] = value[2];
}

// what do to during before
void SensorMQ::onBefore() {
  // prepare the pin for input
  pinMode(_pin, INPUT);
}

// what do to during setup
void SensorMQ::onSetup() {
  _ro = _MQCalibration();
}

// what do to during loop
void SensorMQ::onLoop() {
  if (_pin == -1) return;
  // calculate rs/ro
  float mq = _MQRead()/_ro;
  // calculate the ppm
  float lpg = _MQGetGasPercentage(mq,_gas_lpg);
  float co = _MQGetGasPercentage(mq,_gas_co);
  float smoke = _MQGetGasPercentage(mq,_gas_smoke);
  // assign to the value the requested gas
  uint16_t value;
  if (_target_gas == _gas_lpg) value = lpg;
  if (_target_gas == _gas_co) value = co;
  if (_target_gas == _gas_smoke) value = smoke;
  #if DEBUG == 1
    Serial.print(F("MQ I="));
    Serial.print(_child_id);
    Serial.print(F(" V="));
    Serial.print(value);
    Serial.print(F(" LPG="));
    Serial.print(lpg);
    Serial.print(F(" CO="));
    Serial.print(co);
    Serial.print(F(" SMOKE="));
    Serial.println(smoke);
  #endif
  // store the value
  _value_int = (int16_t)ceil(value);
}

// what do to as the main task when receiving a message
void SensorMQ::onReceive(const MyMessage & message) {
  onLoop();
}

// returns the calculated sensor resistance
float SensorMQ::_MQResistanceCalculation(int raw_adc) {
  return ( ((float)_rl_value*(1023-raw_adc)/raw_adc));
}

//  This function assumes that the sensor is in clean air
float SensorMQ::_MQCalibration() {
  int i;
  float val=0;
  //take multiple samples
  for (i=0; i< _calibration_sample_times; i++) {  
    val += _MQResistanceCalculation(analogRead(_pin));
    delay(_calibration_sample_interval);
  }
  //calculate the average value
  val = val/_calibration_sample_times;                   
  //divided by RO_CLEAN_AIR_FACTOR yields the Ro
  val = val/_ro_clean_air_factor;
  //according to the chart in the datasheet
  return val;
}

// This function use MQResistanceCalculation to caculate the sensor resistenc (Rs).
float SensorMQ::_MQRead() {
  int i;
  float rs=0;
  for (i=0; i<_read_sample_times; i++) {
    rs += _MQResistanceCalculation(analogRead(_pin));
    delay(_read_sample_interval);
  }
  rs = rs/_read_sample_times;
  return rs;
}

// This function passes different curves to the MQGetPercentage function which calculates the ppm (parts per million) of the target gas.
int SensorMQ::_MQGetGasPercentage(float rs_ro_ratio, int gas_id) {
  if ( gas_id == _gas_lpg ) {
    return _MQGetPercentage(rs_ro_ratio,_LPGCurve);
  } else if ( gas_id == _gas_co) {
    return _MQGetPercentage(rs_ro_ratio,_COCurve);
  } else if ( gas_id == _gas_smoke) {
    return _MQGetPercentage(rs_ro_ratio,_SmokeCurve);
  }
  return 0;
}

// returns ppm of the target gas
int SensorMQ::_MQGetPercentage(float rs_ro_ratio, float *pcurve) {
  return (pow(10,( ((log10(rs_ro_ratio)-pcurve[1])/pcurve[2]) + pcurve[0])));
}


DV's avatar
DV committed
656
657
658
659
660
661
662
663
/*
   SensorDigitalInput
*/

// contructor
SensorDigitalInput::SensorDigitalInput(int child_id, int pin): Sensor(child_id, pin) {
}

user2684's avatar
user2684 committed
664
// what do to during before
DV's avatar
DV committed
665
666
667
668
669
void SensorDigitalInput::onBefore() {
  // set the pin for input
  pinMode(_pin, INPUT);
}

user2684's avatar
user2684 committed
670
671
672
673
// what do to during setup
void SensorDigitalInput::onSetup() {
}

DV's avatar
DV committed
674
675
676
677
678
// what do to during loop
void SensorDigitalInput::onLoop() {
  // read the value
  int value = digitalRead(_pin);
  #if DEBUG == 1
679
    Serial.print(F("D-IN I="));
DV's avatar
DV committed
680
    Serial.print(_child_id);
681
    Serial.print(F(" P="));
DV's avatar
DV committed
682
    Serial.print(_pin);
683
    Serial.print(F(" V="));
DV's avatar
DV committed
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
    Serial.println(value);
  #endif
  // store the value
  _value_int = value;
}

// what do to as the main task when receiving a message
void SensorDigitalInput::onReceive(const MyMessage & message) {
  onLoop();
}


/*
   SensorDigitalOutput
*/

// contructor
SensorDigitalOutput::SensorDigitalOutput(int child_id, int pin): Sensor(child_id, pin) {
}

user2684's avatar
user2684 committed
704
// what do to during before
DV's avatar
DV committed
705
706
707
708
709
710
711
712
void SensorDigitalOutput::onBefore() {
  // set the pin as output and initialize it accordingly
  pinMode(_pin, OUTPUT);
  digitalWrite(_pin, _initial_value == LOW ? LOW : HIGH);
  // the initial value is now the current value
  _value_int = _initial_value;
}

user2684's avatar
user2684 committed
713
714
715
716
// what do to during setup
void SensorDigitalOutput::onSetup() {
}

DV's avatar
DV committed
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
// setter/getter
void SensorDigitalOutput::setInitialValue(int value) {
  _initial_value = value;
}
void SensorDigitalOutput::setPulseWidth(int value) {
  _pulse_width = value;
}

// main task
void SensorDigitalOutput::onLoop() {
  // do nothing on loop
}

// what do to as the main task when receiving a message
void SensorDigitalOutput::onReceive(const MyMessage & message) {
  // retrieve from the message the value to set
  int value = message.getInt();
  if (value != 0 && value != 1) return;
  #if DEBUG == 1
736
    Serial.print(F("DOUT I="));
DV's avatar
DV committed
737
    Serial.print(_child_id);
738
    Serial.print(F(" P="));
DV's avatar
DV committed
739
    Serial.print(_pin);
740
    Serial.print(F(" S="));
DV's avatar
DV committed
741
    Serial.print(_initial_value);
742
    Serial.print(F(" V="));
DV's avatar
DV committed
743
    Serial.print(value);
744
    Serial.print(F(" P="));
DV's avatar
DV committed
745
746
747
748
749
750
    Serial.println(_pulse_width);
  #endif
  // set the value
  digitalWrite(_pin, value);
  if (_pulse_width > 0) {
    // if this is a pulse output, restore the value to the original value after the pulse
751
    wait(_pulse_width);
DV's avatar
DV committed
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
    digitalWrite(_pin, value == 0 ? HIGH: LOW);
  }
  // store the current value
  _value_int = value;
}

/*
   SensorRelay
*/

// contructor
SensorRelay::SensorRelay(int child_id, int pin): SensorDigitalOutput(child_id, pin) {
  // set presentation and type
  setPresentation(S_BINARY);
  setType(V_STATUS);
}

DV's avatar
DV committed
769
770
771
772
773
774
// define what to do during loop
void SensorRelay::onLoop() {
    // set the value to -1 so to avoid reporting to the gateway during loop
    _value_int = -1;
}

DV's avatar
DV committed
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/*
   SensorLatchingRelay
*/

// contructor
SensorLatchingRelay::SensorLatchingRelay(int child_id, int pin): SensorRelay(child_id, pin) {
  // like a sensor with a default pulse set
  setPulseWidth(50);
}

/*
   SensorDHT
*/
#if MODULE_DHT == 1
// contructor
SensorDHT::SensorDHT(int child_id, int pin, DHT* dht, int sensor_type, int dht_type): Sensor(child_id, pin) {
  // store the dht object
  _dht = dht;
  // store the sensor type (0: temperature, 1: humidity)
  _sensor_type = sensor_type;
  _dht_type = dht_type;
  if (_sensor_type == 0) {
    // temperature sensor
    setPresentation(S_TEMP);
    setType(V_TEMP);
    setValueType(TYPE_FLOAT);
  }
  else if (_sensor_type == 1) {
    // humidity sensor
    setPresentation(S_HUM);
    setType(V_HUM);
    setValueType(TYPE_FLOAT);
  }
}

user2684's avatar
user2684 committed
810
// what do to during before
DV's avatar
DV committed
811
812
813
814
815
void SensorDHT::onBefore() {
    // initialize the dht library
    _dht->begin();
}

user2684's avatar
user2684 committed
816
817
818
819
// what do to during setup
void SensorDHT::onSetup() {
}

DV's avatar
DV committed
820
821
822
823
824
825
826
827
828
// what do to during loop
void SensorDHT::onLoop() {
  // temperature sensor
  if (_sensor_type == 0) {
    // read the temperature
    float temperature = _dht->readTemperature();
    // convert it
    if (! getControllerConfig().isMetric) temperature = temperature * 1.8 + 32;
    #if DEBUG == 1
829
      Serial.print(F("DHT I="));
DV's avatar
DV committed
830
      Serial.print(_child_id);
831
      Serial.print(F(" T="));
DV's avatar
DV committed
832
833
834
835
836
837
838
839
840
841
842
      Serial.println(temperature);
    #endif
    // store the value
    if (! isnan(temperature)) _value_float = temperature;
  }
  // humidity sensor
  else if (_sensor_type == 1) {
    // read humidity
    float humidity = _dht->readHumidity();
    if (isnan(humidity)) return;
    #if DEBUG == 1
843
      Serial.print(F("DHT I="));
DV's avatar
DV committed
844
      Serial.print(_child_id);
845
      Serial.print(F(" H="));
DV's avatar
DV committed
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
      Serial.println(humidity);
    #endif
    // store the value
    if (! isnan(humidity)) _value_float = humidity;
  }
}

// what do to as the main task when receiving a message
void SensorDHT::onReceive(const MyMessage & message) {
  onLoop();
}
#endif

/*
   SensorSHT21
*/
#if MODULE_SHT21 == 1
// contructor
DV's avatar
DV committed
864
SensorSHT21::SensorSHT21(int child_id, int sensor_type): Sensor(child_id,A2) {
DV's avatar
DV committed
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
  // store the sensor type (0: temperature, 1: humidity)
  _sensor_type = sensor_type;
  if (_sensor_type == 0) {
    // temperature sensor
    setPresentation(S_TEMP);
    setType(V_TEMP);
    setValueType(TYPE_FLOAT);
  }
  else if (_sensor_type == 1) {
    // humidity sensor
    setPresentation(S_HUM);
    setType(V_HUM);
    setValueType(TYPE_FLOAT);
  }
}

user2684's avatar
user2684 committed
881
// what do to during before
DV's avatar
DV committed
882
883
884
885
886
void SensorSHT21::onBefore() {
  // initialize the library
  Wire.begin();
}

user2684's avatar
user2684 committed
887
888
889
890
// what do to during setup
void SensorSHT21::onSetup() {
}

DV's avatar
DV committed
891
892
893
894
895
896
897
898
899
// what do to during loop
void SensorSHT21::onLoop() {
  // temperature sensor
  if (_sensor_type == 0) {
    // read the temperature
    float temperature = SHT2x.GetTemperature();
    // convert it
    if (! getControllerConfig().isMetric) temperature = temperature * 1.8 + 32;
    #if DEBUG == 1
900
      Serial.print(F("SHT I="));
DV's avatar
DV committed
901
      Serial.print(_child_id);
902
      Serial.print(F(" T="));
DV's avatar
DV committed
903
904
905
906
907
908
909
910
911
912
913
      Serial.println(temperature);
    #endif
    // store the value
    if (! isnan(temperature)) _value_float = temperature;
  }
  // Humidity Sensor
  else if (_sensor_type == 1) {
    // read humidity
    float humidity = SHT2x.GetHumidity();
    if (isnan(humidity)) return;
    #if DEBUG == 1
914
      Serial.print(F("SHT I="));
DV's avatar
DV committed
915
      Serial.print(_child_id);
916
      Serial.print(F(" H="));
DV's avatar
DV committed
917
918
919
920
921
922
923
924
925
926
927
928
929
      Serial.println(humidity);
    #endif
    // store the value
    if (! isnan(humidity)) _value_float = humidity;
  }
}

// what do to as the main task when receiving a message
void SensorSHT21::onReceive(const MyMessage & message) {
  onLoop();
}
#endif

DV's avatar
DV committed
930
931
932
933
934
935
936
937
938
/*
 * SensorHTU21D
 */
 #if MODULE_SHT21 == 1
// constructor
SensorHTU21D::SensorHTU21D(int child_id, int pin): SensorSHT21(child_id, pin) {
}
#endif 

DV's avatar
DV committed
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
/*
 * SensorSwitch
 */
SensorSwitch::SensorSwitch(int child_id, int pin): Sensor(child_id,pin) {
  setType(V_TRIPPED);
}

// setter/getter
void SensorSwitch::setMode(int value) {
  _mode = value;
}
int SensorSwitch::getMode() {
  return _mode;
}
void SensorSwitch::setDebounce(int value) {
  _debounce = value;
}
void SensorSwitch::setTriggerTime(int value) {
  _trigger_time = value;
}
959
960
961
962
963
964
void SensorSwitch::setInitial(int value) {
  _initial = value;
}
int SensorSwitch::getInitial() {
  return _initial;
}
DV's avatar
DV committed
965

user2684's avatar
user2684 committed
966
// what do to during before
DV's avatar
DV committed
967
968
969
970
971
972
void SensorSwitch::onBefore() {
  // initialize the value
  if (_mode == RISING) _value_int = LOW;
  else if (_mode == FALLING) _value_int = HIGH;
}

user2684's avatar
user2684 committed
973
974
975
976
// what do to during setup
void SensorSwitch::onSetup() {
}

DV's avatar
DV committed
977
978
979
// what do to during loop
void SensorSwitch::onLoop() {
  // wait to ensure the the input is not floating
980
  if (_debounce > 0) wait(_debounce);
DV's avatar
DV committed
981
982
983
984
985
  // read the value of the pin
  int value = digitalRead(_pin);
  // process the value
  if ( (_mode == RISING && value == HIGH ) || (_mode == FALLING && value == LOW) || (_mode == CHANGE) )  {
    #if DEBUG == 1
986
      Serial.print(F("SWITCH I="));
DV's avatar
DV committed
987
      Serial.print(_child_id);
988
      Serial.print(F(" P="));
DV's avatar
DV committed
989
      Serial.print(_pin);
990
      Serial.print(F(" V="));
DV's avatar
DV committed
991
992
993
994
      Serial.println(value);
    #endif
    _value_int = value;
    // allow the signal to be restored to its normal value
995
    if (_trigger_time > 0) wait(_trigger_time);
DV's avatar
DV committed
996
997
998
999
1000
  } else {
    // invalid
    _value_int = -1;
  }
}