NodeManager.cpp 74.4 KB
Newer Older
DV's avatar
DV committed
1
2
3
4
5
6
/*
 * NodeManager
 */

#include "NodeManager.h"

7
8
9
10
11
12
/***************************************
   Global functions
*/

// return vcc in V
float getVcc() {
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
  #ifndef MY_GATEWAY_ESP8266
    // Measure Vcc against 1.1V Vref
    #if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
      ADMUX = (_BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1));
    #elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
      ADMUX = (_BV(MUX5) | _BV(MUX0));
    #elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
      ADMUX = (_BV(MUX3) | _BV(MUX2));
    #else
      ADMUX = (_BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1));
    #endif
    // Vref settle
    delay(70);
    // Do conversion
    ADCSRA |= _BV(ADSC);
    while (bit_is_set(ADCSRA, ADSC)) {};
    // return Vcc in mV
    return (float)((1125300UL) / ADC) / 1000;
31
  #else
32
    return (float)0;
33
34
  #endif
}
DV's avatar
DV committed
35
36
37
38
39
40

/***************************************
   PowerManager
*/

// set the vcc and ground pin the sensor is connected to
user2684's avatar
user2684 committed
41
void PowerManager::setPowerPins(int ground_pin, int vcc_pin, int wait_time) {
DV's avatar
DV committed
42
  #if DEBUG == 1
43
    Serial.print(F("PWR G="));
DV's avatar
DV committed
44
    Serial.print(ground_pin);
45
    Serial.print(F(" V="));
DV's avatar
DV committed
46
    Serial.println(vcc_pin);
DV's avatar
DV committed
47
  #endif
user2684's avatar
user2684 committed
48
  // configure the vcc pin as output and initialize to high (power on)
DV's avatar
DV committed
49
50
  _vcc_pin = vcc_pin;
  pinMode(_vcc_pin, OUTPUT);
user2684's avatar
user2684 committed
51
  digitalWrite(_vcc_pin, HIGH);
DV's avatar
DV committed
52
53
54
55
  // configure the ground pin as output and initialize to low
  _ground_pin = ground_pin;
  pinMode(_ground_pin, OUTPUT);
  digitalWrite(_ground_pin, LOW);
user2684's avatar
user2684 committed
56
  _wait = wait_time;
DV's avatar
DV committed
57
58
59
}

// return true if power pins have been configured
user2684's avatar
user2684 committed
60
bool PowerManager::isConfigured() {
DV's avatar
DV committed
61
62
63
64
65
66
  if (_vcc_pin != -1 && _ground_pin != -1) return true;
  return false;
}

// turn on the sensor by activating its power pins
void PowerManager::powerOn() {
user2684's avatar
user2684 committed
67
  if (! isConfigured()) return;
DV's avatar
DV committed
68
  #if DEBUG == 1
69
    Serial.print(F("ON P="));
DV's avatar
DV committed
70
71
72
73
74
    Serial.println(_vcc_pin);
  #endif
  // power on the sensor by turning high the vcc pin
  digitalWrite(_vcc_pin, HIGH);
  // wait a bit for the device to settle down
75
  if (_wait > 0) wait(_wait);
DV's avatar
DV committed
76
77
78
79
}

// turn off the sensor
void PowerManager::powerOff() {
user2684's avatar
user2684 committed
80
  if (! isConfigured()) return;
DV's avatar
DV committed
81
  #if DEBUG == 1
82
    Serial.print(F("OFF P="));
DV's avatar
DV committed
83
84
85
86
87
88
    Serial.println(_vcc_pin);
  #endif
  // power off the sensor by turning low the vcc pin
  digitalWrite(_vcc_pin, LOW);
}

89

DV's avatar
DV committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/******************************************
    Sensors
*/

/*
   Sensor class
*/
// constructor
Sensor::Sensor(int child_id, int pin) {
  _child_id = child_id;
  _pin = pin;
  _msg = MyMessage(_child_id, _type);
}

// setter/getter
void Sensor::setPin(int value) {
  _pin = value;
}
int Sensor::getPin() {
  return _pin;
}
void Sensor::setChildId(int value) {
  _child_id = value;
}
int Sensor::getChildId() {
  return _child_id;
}
void Sensor::setPresentation(int value) {
  _presentation = value;
}
int Sensor::getPresentation() {
  return _presentation;
}
void Sensor::setType(int value) {
  _type = value;
  _msg.setType(_type);
}
int Sensor::getType() {
  return _type;
}
user2684's avatar
user2684 committed
130
131
132
void Sensor::setDescription(char* value) {
  _description = value;
}
user2684's avatar
user2684 committed
133
134
135
void Sensor::setAck(bool value) {
  _ack = value;
}
DV's avatar
DV committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
void Sensor::setRetries(int value) {
  _retries = value;
}
void Sensor::setSamples(int value) {
  _samples = value;
}
void Sensor::setSamplesInterval(int value) {
  _samples_interval = value;
}
void Sensor::setTackLastValue(bool value) {
  _track_last_value = value;
}
void Sensor::setForceUpdate(int value) {
  _force_update = value;
}
void Sensor::setValueType(int value) {
  _value_type = value;
}
void Sensor::setFloatPrecision(int value) {
  _float_precision = value;
}
#if POWER_MANAGER == 1
user2684's avatar
user2684 committed
158
159
    void Sensor::setPowerPins(int ground_pin, int vcc_pin, int wait_time) {
      _powerManager.setPowerPins(ground_pin, vcc_pin, wait_time);
DV's avatar
DV committed
160
    }
DV's avatar
DV committed
161
162
163
    void Sensor::setAutoPowerPins(bool value) {
      _auto_power_pins = value;
    }
DV's avatar
DV committed
164
165
166
167
168
169
170
    void Sensor::powerOn() {
      _powerManager.powerOn();
    }
    void Sensor::powerOff() {
      _powerManager.powerOff();
    }
#endif
DV's avatar
DV committed
171
172
173
void Sensor::setSleepBetweenSend(int value) {
  _sleep_between_send = value;
}
174
175
176
177
178
179
void Sensor::setInterruptPin(int value) {
  _interrupt_pin = value;
}
int Sensor::getInterruptPin() {
  return _interrupt_pin;
}
DV's avatar
DV committed
180
181
182
183

// present the sensor to the gateway and controller
void Sensor::presentation() {
  #if DEBUG == 1
184
    Serial.print(F("PRES I="));
DV's avatar
DV committed
185
    Serial.print(_child_id);
186
    Serial.print(F(" T="));
DV's avatar
DV committed
187
188
    Serial.println(_presentation);
  #endif
user2684's avatar
user2684 committed
189
  present(_child_id, _presentation,_description,_ack);
DV's avatar
DV committed
190
191
192
193
194
195
196
197
}

// call the sensor-specific implementation of before
void Sensor::before() {
  if (_pin == -1) return;
  onBefore();
}

user2684's avatar
user2684 committed
198
199
200
201
202
203
// call the sensor-specific implementation of setup
void Sensor::setup() {
  if (_pin == -1) return;
  onSetup();
}

DV's avatar
DV committed
204
205
206
207
208
// call the sensor-specific implementation of loop
void Sensor::loop(const MyMessage & message) {
  if (_pin == -1) return;
  #if POWER_MANAGER == 1
    // turn the sensor on
DV's avatar
DV committed
209
    if (_auto_power_pins) powerOn();
DV's avatar
DV committed
210
211
212
213
  #endif
  // for numeric sensor requiring multiple samples, keep track of the total
  float total = 0;
  // keep track of the number of cycles since the last update
214
  if (_force_update > 0) _cycles++;
DV's avatar
DV committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
  // collect multiple samples if needed
  for (int i = 0; i < _samples; i++) {
    // call the sensor-specific implementation of the main task which will store the result in the _value variable
    if (message.sender == 0 && message.sensor == 0 && message.getCommand() == 0 && message.type == 0) {
      // empty message, we'be been called from loop()
      onLoop();
    }
    else {
      // we've been called from receive(), pass the message along
      onReceive(message);
    }
    // for integers and floats, keep track of the total
    if (_value_type == TYPE_INTEGER) total += (float)_value_int;
    else if (_value_type == TYPE_FLOAT) total += _value_float;
    // wait between samples
230
    if (_samples_interval > 0) wait(_samples_interval);
DV's avatar
DV committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
  }
  // process the result and send a response back. 
  if (_value_type == TYPE_INTEGER && total > -1) {
    // if the value is an integer, calculate the average value of the samples
    int avg = (int) (total / _samples);
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && avg != _last_value_int) || (_track_last_value && _force_update > 0 && _cycles > _force_update)) {
      _cycles = 0;
      _last_value_int = avg;
      _send(_msg.set(avg));
    }
  }
  // process a float value
  else if (_value_type == TYPE_FLOAT && total > -1) {
    // calculate the average value of the samples
    float avg = total / _samples;
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && avg != _last_value_float) || (_track_last_value && _cycles >= _force_update)) {
      _cycles = 0;
      _last_value_float = avg;
      _send(_msg.set(avg, _float_precision));
    }
  }
  // process a string value
  else if (_value_type == TYPE_STRING) {
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && strcmp(_value_string, _last_value_string) != 0) || (_track_last_value && _cycles >= _force_update)) {
      _cycles = 0;
      _last_value_string = _value_string;
      _send(_msg.set(_value_string));
    }
  }
  // turn the sensor off
  #if POWER_MANAGER == 1
DV's avatar
DV committed
265
    if (_auto_power_pins) powerOff();
DV's avatar
DV committed
266
267
268
269
270
271
272
  #endif
}

// receive a message from the radio network
void Sensor::receive(const MyMessage &message) {
  // return if not for this sensor
  if (message.sensor != _child_id || message.type != _type) return;
273
  // a request would make the sensor executing its main task passing along the message
DV's avatar
DV committed
274
275
276
277
278
279
280
  loop(message);
}

// send a message to the network
void Sensor::_send(MyMessage & message) {
  // send the message, multiple times if requested
  for (int i = 0; i < _retries; i++) {
DV's avatar
DV committed
281
    // if configured, sleep beetween each send
282
    if (_sleep_between_send > 0) wait(_sleep_between_send);
DV's avatar
DV committed
283
    #if DEBUG == 1
284
      Serial.print(F("SEND D="));
DV's avatar
DV committed
285
      Serial.print(message.destination);
286
      Serial.print(F(" I="));
DV's avatar
DV committed
287
      Serial.print(message.sensor);
288
      Serial.print(F(" C="));
DV's avatar
DV committed
289
      Serial.print(message.getCommand());
290
      Serial.print(F(" T="));
DV's avatar
DV committed
291
      Serial.print(message.type);
292
      Serial.print(F(" S="));
DV's avatar
DV committed
293
      Serial.print(message.getString());
294
      Serial.print(F(" I="));
DV's avatar
DV committed
295
      Serial.print(message.getInt());
296
      Serial.print(F(" F="));
DV's avatar
DV committed
297
298
      Serial.println(message.getFloat());
    #endif
user2684's avatar
user2684 committed
299
    send(message,_ack);
DV's avatar
DV committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
  }
}

/*
   SensorAnalogInput
*/

// contructor
SensorAnalogInput::SensorAnalogInput(int child_id, int pin): Sensor(child_id, pin) {
}

// setter/getter
void SensorAnalogInput::setReference(int value) {
  _reference = value;
}
void SensorAnalogInput::setReverse(bool value) {
  _reverse = value;
}
void SensorAnalogInput::setOutputPercentage(bool value) {
  _output_percentage = value;
}
void SensorAnalogInput::setRangeMin(int value) {
  _range_min = value;
}
void SensorAnalogInput::setRangeMax(int value) {
  _range_max = value;
}

user2684's avatar
user2684 committed
328
// what do to during before
DV's avatar
DV committed
329
330
331
332
333
void SensorAnalogInput::onBefore() {
  // prepare the pin for input
  pinMode(_pin, INPUT);
}

user2684's avatar
user2684 committed
334
335
336
337
// what do to during setup
void SensorAnalogInput::onSetup() {
}

DV's avatar
DV committed
338
339
340
341
342
343
344
345
// what do to during loop
void SensorAnalogInput::onLoop() {
  // read the input
  int adc = _getAnalogRead();
  // calculate the percentage
  int percentage = 0;
  if (_output_percentage) percentage = _getPercentage(adc);
  #if DEBUG == 1
346
    Serial.print(F("A-IN I="));
DV's avatar
DV committed
347
    Serial.print(_child_id);
348
    Serial.print(F(" V="));
DV's avatar
DV committed
349
    Serial.print(adc);
350
    Serial.print(F(" %="));
DV's avatar
DV committed
351
352
353
354
355
356
357
358
    Serial.println(percentage);
  #endif
  // store the result
  _value_int = _output_percentage ? percentage : adc;
}

// what do to during loop
void SensorAnalogInput::onReceive(const MyMessage & message) {
359
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
360
361
362
363
}

// read the analog input
int SensorAnalogInput::_getAnalogRead() {
364
365
366
367
368
369
370
  #ifndef MY_GATEWAY_ESP8266
    // set the reference
    if (_reference != -1) {
      analogReference(_reference);
      wait(100);
    }
  #endif
DV's avatar
DV committed
371
372
373
374
375
376
377
378
379
  // read and return the value
  int value = analogRead(_pin);
  if (_reverse) value = _range_max - value;
  return value;
}

// return a percentage from an analog value
int SensorAnalogInput::_getPercentage(int adc) {
  float value = (float)adc;
DV's avatar
DV committed
380
381
  // restore the original value
  if (_reverse) value = 1024 - value;
DV's avatar
DV committed
382
383
  // scale the percentage based on the range provided
  float percentage = ((value - _range_min) / (_range_max - _range_min)) * 100;
DV's avatar
DV committed
384
  if (_reverse) percentage = 100 - percentage;
DV's avatar
DV committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
  if (percentage > 100) percentage = 100;
  if (percentage < 0) percentage = 0;
  return (int)percentage;
}

/*
   SensorLDR
*/

// contructor
SensorLDR::SensorLDR(int child_id, int pin): SensorAnalogInput(child_id, pin) {
  // set presentation and type and reverse (0: no light, 100: max light)
  setPresentation(S_LIGHT_LEVEL);
  setType(V_LIGHT_LEVEL);
  setReverse(true);
}

/*
   SensorThermistor
*/

// contructor
SensorThermistor::SensorThermistor(int child_id, int pin): Sensor(child_id, pin) {
  // set presentation, type and value type
  setPresentation(S_TEMP);
  setType(V_TEMP);
  setValueType(TYPE_FLOAT);
}

// setter/getter
415
void SensorThermistor::setNominalResistor(long value) {
DV's avatar
DV committed
416
417
418
419
420
421
422
423
  _nominal_resistor = value;
}
void SensorThermistor::setNominalTemperature(int value) {
  _nominal_temperature = value;
}
void SensorThermistor::setBCoefficient(int value) {
  _b_coefficient = value;
}
424
void SensorThermistor::setSeriesResistor(long value) {
DV's avatar
DV committed
425
426
427
428
429
430
  _series_resistor = value;
}
void SensorThermistor::setOffset(float value) {
  _offset = value;
}

user2684's avatar
user2684 committed
431
// what do to during before
DV's avatar
DV committed
432
433
434
435
436
void SensorThermistor::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

user2684's avatar
user2684 committed
437
438
439
440
// what do to during setup
void SensorThermistor::onSetup() {
}

DV's avatar
DV committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
// what do to during loop
void SensorThermistor::onLoop() {
  // read the voltage across the thermistor
  float adc = analogRead(_pin);
  // calculate the temperature
  float reading = (1023 / adc)  - 1;
  reading = _series_resistor / reading;
  float temperature;
  temperature = reading / _nominal_resistor;     // (R/Ro)
  temperature = log(temperature);                  // ln(R/Ro)
  temperature /= _b_coefficient;                   // 1/B * ln(R/Ro)
  temperature += 1.0 / (_nominal_temperature + 273.15); // + (1/To)
  temperature = 1.0 / temperature;                 // Invert
  temperature -= 273.15;                         // convert to C
  if (! getControllerConfig().isMetric) temperature = temperature * 1.8 + 32;
  #if DEBUG == 1
457
    Serial.print(F("THER I="));
DV's avatar
DV committed
458
    Serial.print(_child_id);
459
    Serial.print(F(" V="));
DV's avatar
DV committed
460
    Serial.print(adc);
461
    Serial.print(F(" T="));
462
    Serial.print(temperature);
463
    Serial.print(F(" M="));
DV's avatar
DV committed
464
465
466
467
468
469
470
471
    Serial.println(getControllerConfig().isMetric);
  #endif
  // store the value
  _value_float = temperature;
}

// what do to as the main task when receiving a message
void SensorThermistor::onReceive(const MyMessage & message) {
472
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
473
474
}

475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

/*
   SensorML8511
*/

// contructor
SensorML8511::SensorML8511(int child_id, int pin): Sensor(child_id, pin) {
  // set presentation, type and value type
  setPresentation(S_UV);
  setType(V_UV);
  setValueType(TYPE_FLOAT);
}

// what do to during before
void SensorML8511::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

// what do to during setup
void SensorML8511::onSetup() {
}

// what do to during loop
void SensorML8511::onLoop() {
  // read the voltage 
  int uvLevel = analogRead(_pin);
  int refLevel = getVcc()*1024/3.3;
  //Use the 3.3V power pin as a reference to get a very accurate output value from sensor
  float outputVoltage = 3.3 / refLevel * uvLevel;
  //Convert the voltage to a UV intensity level
  float uvIntensity = _mapfloat(outputVoltage, 0.99, 2.8, 0.0, 15.0); 
  #if DEBUG == 1
    Serial.print(F("UV I="));
    Serial.print(_child_id);
    Serial.print(F(" V="));
    Serial.print(outputVoltage);
    Serial.print(F(" I="));
    Serial.println(uvIntensity);
  #endif
  // store the value
  _value_float = uvIntensity;
}

// what do to as the main task when receiving a message
void SensorML8511::onReceive(const MyMessage & message) {
521
  if (message.getCommand() == C_REQ) onLoop();
522
523
524
525
526
527
528
}

// The Arduino Map function but for floats
float SensorML8511::_mapfloat(float x, float in_min, float in_max, float out_min, float out_max) {
  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
/*
   SensorACS712
*/

// contructor
SensorACS712::SensorACS712(int child_id, int pin): Sensor(child_id, pin) {
  // set presentation, type and value type
  setPresentation(S_MULTIMETER);
  setType(V_CURRENT);
  setValueType(TYPE_FLOAT);
}

// setter/getter
void SensorACS712::setmVPerAmp(int value) {
  _mv_per_amp = value;
}
void SensorACS712::setOffset(int value) {
  _ACS_offset = value;
}

// what do to during before
void SensorACS712::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

// what do to during setup
void SensorACS712::onSetup() {
}

// what do to during loop
void SensorACS712::onLoop() {
  int value = analogRead(_pin);
  // convert the analog read in mV
  double voltage = (value / 1024.0) * 5000; 
  // convert voltage in amps
  _value_float = ((voltage - _ACS_offset) / _mv_per_amp);
  #if DEBUG == 1
    Serial.print(F("ACS I="));
    Serial.print(_child_id);
    Serial.print(F(" A="));
    Serial.println(_value_float);
  #endif
}

// what do to as the main task when receiving a message
void SensorACS712::onReceive(const MyMessage & message) {
  if (message.getCommand() == C_REQ) onLoop();
}


580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
/*
 * SensorMQ
 */
SensorMQ::SensorMQ(int child_id, int pin): Sensor(child_id,pin) {
  setPresentation(S_AIR_QUALITY);
  setType(V_LEVEL);
}

//setter/getter
void SensorMQ::setRlValue(float value) {
  _rl_value = value;
}
void SensorMQ::setRoValue(float value) {
  _ro = value;
}
void SensorMQ::setCleanAirFactor(float value) {
  _ro_clean_air_factor = value;
}
void SensorMQ::setCalibrationSampleTimes(int value) {
  _calibration_sample_times = value;
}
void SensorMQ::setCalibrationSampleInterval(int value){
  _calibration_sample_interval = value;
}
void SensorMQ::setReadSampleTimes(int value) {
  _read_sample_times = value;
}
void SensorMQ::setReadSampleInterval(int value) {
  _read_sample_interval = value;
}
void SensorMQ::setLPGCurve(float *value) {
  _LPGCurve[0] = value[0];
  _LPGCurve[2] = value[1];
  _LPGCurve[2] = value[2];
}
void SensorMQ::setCOCurve(float *value) {
  _COCurve[0] = value[0];
  _COCurve[2] = value[1];
  _COCurve[2] = value[2];
}
void SensorMQ::setSmokeCurve(float *value) {
  _SmokeCurve[0] = value[0];
  _SmokeCurve[2] = value[1];
  _SmokeCurve[2] = value[2];
}

// what do to during before
void SensorMQ::onBefore() {
  // prepare the pin for input
  pinMode(_pin, INPUT);
}

// what do to during setup
void SensorMQ::onSetup() {
  _ro = _MQCalibration();
}

// what do to during loop
void SensorMQ::onLoop() {
  if (_pin == -1) return;
  // calculate rs/ro
  float mq = _MQRead()/_ro;
  // calculate the ppm
  float lpg = _MQGetGasPercentage(mq,_gas_lpg);
  float co = _MQGetGasPercentage(mq,_gas_co);
  float smoke = _MQGetGasPercentage(mq,_gas_smoke);
  // assign to the value the requested gas
  uint16_t value;
  if (_target_gas == _gas_lpg) value = lpg;
  if (_target_gas == _gas_co) value = co;
  if (_target_gas == _gas_smoke) value = smoke;
  #if DEBUG == 1
    Serial.print(F("MQ I="));
    Serial.print(_child_id);
    Serial.print(F(" V="));
    Serial.print(value);
    Serial.print(F(" LPG="));
    Serial.print(lpg);
    Serial.print(F(" CO="));
    Serial.print(co);
    Serial.print(F(" SMOKE="));
    Serial.println(smoke);
  #endif
  // store the value
  _value_int = (int16_t)ceil(value);
}

// what do to as the main task when receiving a message
void SensorMQ::onReceive(const MyMessage & message) {
669
  if (message.getCommand() == C_REQ) onLoop();
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
}

// returns the calculated sensor resistance
float SensorMQ::_MQResistanceCalculation(int raw_adc) {
  return ( ((float)_rl_value*(1023-raw_adc)/raw_adc));
}

//  This function assumes that the sensor is in clean air
float SensorMQ::_MQCalibration() {
  int i;
  float val=0;
  //take multiple samples
  for (i=0; i< _calibration_sample_times; i++) {  
    val += _MQResistanceCalculation(analogRead(_pin));
    delay(_calibration_sample_interval);
  }
  //calculate the average value
  val = val/_calibration_sample_times;                   
  //divided by RO_CLEAN_AIR_FACTOR yields the Ro
  val = val/_ro_clean_air_factor;
  //according to the chart in the datasheet
  return val;
}

// This function use MQResistanceCalculation to caculate the sensor resistenc (Rs).
float SensorMQ::_MQRead() {
  int i;
  float rs=0;
  for (i=0; i<_read_sample_times; i++) {
    rs += _MQResistanceCalculation(analogRead(_pin));
    delay(_read_sample_interval);
  }
  rs = rs/_read_sample_times;
  return rs;
}

// This function passes different curves to the MQGetPercentage function which calculates the ppm (parts per million) of the target gas.
int SensorMQ::_MQGetGasPercentage(float rs_ro_ratio, int gas_id) {
  if ( gas_id == _gas_lpg ) {
    return _MQGetPercentage(rs_ro_ratio,_LPGCurve);
  } else if ( gas_id == _gas_co) {
    return _MQGetPercentage(rs_ro_ratio,_COCurve);
  } else if ( gas_id == _gas_smoke) {
    return _MQGetPercentage(rs_ro_ratio,_SmokeCurve);
  }
  return 0;
}

// returns ppm of the target gas
int SensorMQ::_MQGetPercentage(float rs_ro_ratio, float *pcurve) {
  return (pow(10,( ((log10(rs_ro_ratio)-pcurve[1])/pcurve[2]) + pcurve[0])));
}


DV's avatar
DV committed
724
725
726
727
728
729
730
731
/*
   SensorDigitalInput
*/

// contructor
SensorDigitalInput::SensorDigitalInput(int child_id, int pin): Sensor(child_id, pin) {
}

user2684's avatar
user2684 committed
732
// what do to during before
DV's avatar
DV committed
733
734
735
736
737
void SensorDigitalInput::onBefore() {
  // set the pin for input
  pinMode(_pin, INPUT);
}

user2684's avatar
user2684 committed
738
739
740
741
// what do to during setup
void SensorDigitalInput::onSetup() {
}

DV's avatar
DV committed
742
743
744
745
746
// what do to during loop
void SensorDigitalInput::onLoop() {
  // read the value
  int value = digitalRead(_pin);
  #if DEBUG == 1
747
    Serial.print(F("D-IN I="));
DV's avatar
DV committed
748
    Serial.print(_child_id);
749
    Serial.print(F(" P="));
DV's avatar
DV committed
750
    Serial.print(_pin);
751
    Serial.print(F(" V="));
DV's avatar
DV committed
752
753
754
755
756
757
758
759
    Serial.println(value);
  #endif
  // store the value
  _value_int = value;
}

// what do to as the main task when receiving a message
void SensorDigitalInput::onReceive(const MyMessage & message) {
760
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
761
762
763
764
765
766
767
768
769
770
771
}


/*
   SensorDigitalOutput
*/

// contructor
SensorDigitalOutput::SensorDigitalOutput(int child_id, int pin): Sensor(child_id, pin) {
}

user2684's avatar
user2684 committed
772
// what do to during before
DV's avatar
DV committed
773
774
775
void SensorDigitalOutput::onBefore() {
  // set the pin as output and initialize it accordingly
  pinMode(_pin, OUTPUT);
776
777
  _state = _initial_value == LOW ? LOW : HIGH;
  digitalWrite(_pin, _state);
DV's avatar
DV committed
778
779
780
781
  // the initial value is now the current value
  _value_int = _initial_value;
}

user2684's avatar
user2684 committed
782
783
784
785
// what do to during setup
void SensorDigitalOutput::onSetup() {
}

DV's avatar
DV committed
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
// setter/getter
void SensorDigitalOutput::setInitialValue(int value) {
  _initial_value = value;
}
void SensorDigitalOutput::setPulseWidth(int value) {
  _pulse_width = value;
}

// main task
void SensorDigitalOutput::onLoop() {
  // do nothing on loop
}

// what do to as the main task when receiving a message
void SensorDigitalOutput::onReceive(const MyMessage & message) {
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
  if (message.getCommand() == C_SET) {
    // retrieve from the message the value to set
    int value = message.getInt();
    if (value != 0 && value != 1) return;
    #if DEBUG == 1
      Serial.print(F("DOUT I="));
      Serial.print(_child_id);
      Serial.print(F(" P="));
      Serial.print(_pin);
      Serial.print(F(" V="));
      Serial.print(value);
      Serial.print(F(" P="));
      Serial.println(_pulse_width);
    #endif
    // set the value
    digitalWrite(_pin, value);
    _state = value;
    if (_pulse_width > 0) {
      // if this is a pulse output, restore the value to the original value after the pulse
      wait(_pulse_width);
      digitalWrite(_pin, value == 0 ? HIGH: LOW);
    }
    // store the current value so it will be sent to the controller
    _value_int = value;
  }
  if (message.getCommand() == C_REQ) {
    // return the current status
    _value_int = _state;
  }
DV's avatar
DV committed
830
831
832
833
834
835
836
837
838
839
840
841
842
}

/*
   SensorRelay
*/

// contructor
SensorRelay::SensorRelay(int child_id, int pin): SensorDigitalOutput(child_id, pin) {
  // set presentation and type
  setPresentation(S_BINARY);
  setType(V_STATUS);
}

DV's avatar
DV committed
843
844
845
846
847
848
// define what to do during loop
void SensorRelay::onLoop() {
    // set the value to -1 so to avoid reporting to the gateway during loop
    _value_int = -1;
}

DV's avatar
DV committed
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
/*
   SensorLatchingRelay
*/

// contructor
SensorLatchingRelay::SensorLatchingRelay(int child_id, int pin): SensorRelay(child_id, pin) {
  // like a sensor with a default pulse set
  setPulseWidth(50);
}

/*
   SensorDHT
*/
#if MODULE_DHT == 1
// contructor
SensorDHT::SensorDHT(int child_id, int pin, DHT* dht, int sensor_type, int dht_type): Sensor(child_id, pin) {
  // store the dht object
  _dht = dht;
  // store the sensor type (0: temperature, 1: humidity)
  _sensor_type = sensor_type;
  _dht_type = dht_type;
  if (_sensor_type == 0) {
    // temperature sensor
    setPresentation(S_TEMP);
    setType(V_TEMP);
    setValueType(TYPE_FLOAT);
  }
  else if (_sensor_type == 1) {
    // humidity sensor
    setPresentation(S_HUM);
    setType(V_HUM);
    setValueType(TYPE_FLOAT);
  }
}

user2684's avatar
user2684 committed
884
// what do to during before
DV's avatar
DV committed
885
886
887
888
889
void SensorDHT::onBefore() {
    // initialize the dht library
    _dht->begin();
}

user2684's avatar
user2684 committed
890
891
892
893
// what do to during setup
void SensorDHT::onSetup() {
}

DV's avatar
DV committed
894
895
896
897
898
899
900
901
902
// what do to during loop
void SensorDHT::onLoop() {
  // temperature sensor
  if (_sensor_type == 0) {
    // read the temperature
    float temperature = _dht->readTemperature();
    // convert it
    if (! getControllerConfig().isMetric) temperature = temperature * 1.8 + 32;
    #if DEBUG == 1
903
      Serial.print(F("DHT I="));
DV's avatar
DV committed
904
      Serial.print(_child_id);
905
      Serial.print(F(" T="));
DV's avatar
DV committed
906
907
908
909
910
911
912
913
914
915
916
      Serial.println(temperature);
    #endif
    // store the value
    if (! isnan(temperature)) _value_float = temperature;
  }
  // humidity sensor
  else if (_sensor_type == 1) {
    // read humidity
    float humidity = _dht->readHumidity();
    if (isnan(humidity)) return;
    #if DEBUG == 1
917
      Serial.print(F("DHT I="));
DV's avatar
DV committed
918
      Serial.print(_child_id);
919
      Serial.print(F(" H="));
DV's avatar
DV committed
920
921
922
923
924
925
926
927
928
      Serial.println(humidity);
    #endif
    // store the value
    if (! isnan(humidity)) _value_float = humidity;
  }
}

// what do to as the main task when receiving a message
void SensorDHT::onReceive(const MyMessage & message) {
929
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
930
931
932
933
934
935
936
937
}
#endif

/*
   SensorSHT21
*/
#if MODULE_SHT21 == 1
// contructor
DV's avatar
DV committed
938
SensorSHT21::SensorSHT21(int child_id, int sensor_type): Sensor(child_id,A2) {
DV's avatar
DV committed
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
  // store the sensor type (0: temperature, 1: humidity)
  _sensor_type = sensor_type;
  if (_sensor_type == 0) {
    // temperature sensor
    setPresentation(S_TEMP);
    setType(V_TEMP);
    setValueType(TYPE_FLOAT);
  }
  else if (_sensor_type == 1) {
    // humidity sensor
    setPresentation(S_HUM);
    setType(V_HUM);
    setValueType(TYPE_FLOAT);
  }
}

user2684's avatar
user2684 committed
955
// what do to during before
DV's avatar
DV committed
956
957
958
959
960
void SensorSHT21::onBefore() {
  // initialize the library
  Wire.begin();
}

user2684's avatar
user2684 committed
961
962
963
964
// what do to during setup
void SensorSHT21::onSetup() {
}

DV's avatar
DV committed
965
966
967
968
969
970
971
972
973
// what do to during loop
void SensorSHT21::onLoop() {
  // temperature sensor
  if (_sensor_type == 0) {
    // read the temperature
    float temperature = SHT2x.GetTemperature();
    // convert it
    if (! getControllerConfig().isMetric) temperature = temperature * 1.8 + 32;
    #if DEBUG == 1
974
      Serial.print(F("SHT I="));
DV's avatar
DV committed
975
      Serial.print(_child_id);
976
      Serial.print(F(" T="));
DV's avatar
DV committed
977
978
979
980
981
982
983
984
985
986
987
      Serial.println(temperature);
    #endif
    // store the value
    if (! isnan(temperature)) _value_float = temperature;
  }
  // Humidity Sensor
  else if (_sensor_type == 1) {
    // read humidity
    float humidity = SHT2x.GetHumidity();
    if (isnan(humidity)) return;
    #if DEBUG == 1
988
      Serial.print(F("SHT I="));
DV's avatar
DV committed
989
      Serial.print(_child_id);
990
      Serial.print(F(" H="));
DV's avatar
DV committed
991
992
993
994
995
996
997
998
999
      Serial.println(humidity);
    #endif
    // store the value
    if (! isnan(humidity)) _value_float = humidity;
  }
}

// what do to as the main task when receiving a message
void SensorSHT21::onReceive(const MyMessage & message) {
1000
  if (message.getCommand() == C_REQ) onLoop();