NodeManager.cpp 39.2 KB
Newer Older
DV's avatar
DV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
 * NodeManager
 */

#include "NodeManager.h"


/***************************************
   PowerManager
*/

// set the vcc and ground pin the sensor is connected to
void PowerManager::setPowerPins(int ground_pin, int vcc_pin, long wait = 0) {
  #if DEBUG == 1
    Serial.print("PowerPins vcc=");
    Serial.print(vcc_pin);
    Serial.print(", gnd=");
    Serial.println(ground_pin);
  #endif
  // configure the vcc pin as output and initialize to low (power off)
  _vcc_pin = vcc_pin;
  pinMode(_vcc_pin, OUTPUT);
  digitalWrite(_vcc_pin, LOW);
  // configure the ground pin as output and initialize to low
  _ground_pin = ground_pin;
  pinMode(_ground_pin, OUTPUT);
  digitalWrite(_ground_pin, LOW);
  _wait = wait;
}

// return true if power pins have been configured
bool PowerManager::_hasPowerManager() {
  if (_vcc_pin != -1 && _ground_pin != -1) return true;
  return false;
}

// turn on the sensor by activating its power pins
void PowerManager::powerOn() {
  if (! _hasPowerManager()) return;
  #if DEBUG == 1
    Serial.print("PowerOn pin=");
    Serial.println(_vcc_pin);
  #endif
  // power on the sensor by turning high the vcc pin
  digitalWrite(_vcc_pin, HIGH);
  // wait a bit for the device to settle down
  if (_wait > 0) sleep(_wait);
}

// turn off the sensor
void PowerManager::powerOff() {
  if (! _hasPowerManager()) return;
  #if DEBUG == 1
    Serial.print("PowerOff pin=");
    Serial.println(_vcc_pin);
  #endif
  // power off the sensor by turning low the vcc pin
  digitalWrite(_vcc_pin, LOW);
}

/******************************************
    Sensors
*/

/*
   Sensor class
*/
// constructor
Sensor::Sensor(int child_id, int pin) {
  _child_id = child_id;
  _pin = pin;
  _msg = MyMessage(_child_id, _type);
}

// setter/getter
void Sensor::setPin(int value) {
  _pin = value;
}
int Sensor::getPin() {
  return _pin;
}
void Sensor::setChildId(int value) {
  _child_id = value;
}
int Sensor::getChildId() {
  return _child_id;
}
void Sensor::setPresentation(int value) {
  _presentation = value;
}
int Sensor::getPresentation() {
  return _presentation;
}
void Sensor::setType(int value) {
  _type = value;
  _msg.setType(_type);
}
int Sensor::getType() {
  return _type;
}
void Sensor::setRetries(int value) {
  _retries = value;
}
void Sensor::setSamples(int value) {
  _samples = value;
}
void Sensor::setSamplesInterval(int value) {
  _samples_interval = value;
}
void Sensor::setTackLastValue(bool value) {
  _track_last_value = value;
}
void Sensor::setForceUpdate(int value) {
  _force_update = value;
}
void Sensor::setValueType(int value) {
  _value_type = value;
}
void Sensor::setFloatPrecision(int value) {
  _float_precision = value;
}
#if POWER_MANAGER == 1
    void Sensor::setPowerPins(int ground_pin, int vcc_pin, long wait = 0) {
      _powerManager.setPowerPins(ground_pin, vcc_pin, wait);
    }
    void Sensor::powerOn() {
      _powerManager.powerOn();
    }
    void Sensor::powerOff() {
      _powerManager.powerOff();
    }
#endif

// present the sensor to the gateway and controller
void Sensor::presentation() {
  #if DEBUG == 1
    Serial.print("Present id=");
    Serial.print(_child_id);
    Serial.print(", pres=");
    Serial.println(_presentation);
  #endif
  present(_child_id, _presentation);
}

// call the sensor-specific implementation of before
void Sensor::before() {
  if (_pin == -1) return;
  onBefore();
}

// call the sensor-specific implementation of loop
void Sensor::loop(const MyMessage & message) {
  if (_pin == -1) return;
  #if POWER_MANAGER == 1
    // turn the sensor on
    powerOn();
  #endif
  // for numeric sensor requiring multiple samples, keep track of the total
  float total = 0;
  // keep track of the number of cycles since the last update
  _cycles++;
  // collect multiple samples if needed
  for (int i = 0; i < _samples; i++) {
    // call the sensor-specific implementation of the main task which will store the result in the _value variable
    if (message.sender == 0 && message.sensor == 0 && message.getCommand() == 0 && message.type == 0) {
      // empty message, we'be been called from loop()
      onLoop();
    }
    else {
      // we've been called from receive(), pass the message along
      onReceive(message);
    }
    // for integers and floats, keep track of the total
    if (_value_type == TYPE_INTEGER) total += (float)_value_int;
    else if (_value_type == TYPE_FLOAT) total += _value_float;
    // wait between samples
    if (_samples_interval > 0) sleep(_samples_interval);
  }
  // process the result and send a response back. 
  if (_value_type == TYPE_INTEGER && total > -1) {
    // if the value is an integer, calculate the average value of the samples
    int avg = (int) (total / _samples);
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && avg != _last_value_int) || (_track_last_value && _force_update > 0 && _cycles > _force_update)) {
      _cycles = 0;
      _last_value_int = avg;
      _send(_msg.set(avg));
    }
  }
  // process a float value
  else if (_value_type == TYPE_FLOAT && total > -1) {
    // calculate the average value of the samples
    float avg = total / _samples;
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && avg != _last_value_float) || (_track_last_value && _cycles >= _force_update)) {
      _cycles = 0;
      _last_value_float = avg;
      _send(_msg.set(avg, _float_precision));
    }
  }
  // process a string value
  else if (_value_type == TYPE_STRING) {
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && strcmp(_value_string, _last_value_string) != 0) || (_track_last_value && _cycles >= _force_update)) {
      _cycles = 0;
      _last_value_string = _value_string;
      _send(_msg.set(_value_string));
    }
  }
  // turn the sensor off
  #if POWER_MANAGER == 1
    powerOff();
  #endif
}

// receive a message from the radio network
void Sensor::receive(const MyMessage &message) {
  // return if not for this sensor
  if (message.sensor != _child_id || message.type != _type) return;
  // a request would make the sensor executing its main task
  loop(message);
}

// send a message to the network
void Sensor::_send(MyMessage & message) {
  // send the message, multiple times if requested
  for (int i = 0; i < _retries; i++) {
    #if DEBUG == 1
      Serial.print("Send to=");
      Serial.print(message.destination);
      Serial.print(" id=");
      Serial.print(message.sensor);
      Serial.print(" cmd=");
      Serial.print(message.getCommand());
      Serial.print(" type=");
      Serial.print(message.type);
      Serial.print(" str=");
      Serial.print(message.getString());
      Serial.print(" int=");
      Serial.print(message.getInt());
      Serial.print(" float=");
      Serial.println(message.getFloat());
    #endif
    send(message);
  }
}

/*
   SensorAnalogInput
*/

// contructor
SensorAnalogInput::SensorAnalogInput(int child_id, int pin): Sensor(child_id, pin) {
}

// setter/getter
void SensorAnalogInput::setReference(int value) {
  _reference = value;
}
void SensorAnalogInput::setReverse(bool value) {
  _reverse = value;
}
void SensorAnalogInput::setOutputPercentage(bool value) {
  _output_percentage = value;
}
void SensorAnalogInput::setRangeMin(int value) {
  _range_min = value;
}
void SensorAnalogInput::setRangeMax(int value) {
  _range_max = value;
}

// what do to during setup
void SensorAnalogInput::onBefore() {
  // prepare the pin for input
  pinMode(_pin, INPUT);
}

// what do to during loop
void SensorAnalogInput::onLoop() {
  // read the input
  int adc = _getAnalogRead();
  // calculate the percentage
  int percentage = 0;
  if (_output_percentage) percentage = _getPercentage(adc);
  #if DEBUG == 1
    Serial.print(" AnalogInput id=");
    Serial.print(_child_id);
    Serial.print(", val=");
    Serial.print(adc);
    Serial.print(", %=");
    Serial.println(percentage);
  #endif
  // store the result
  _value_int = _output_percentage ? percentage : adc;
}

// what do to during loop
void SensorAnalogInput::onReceive(const MyMessage & message) {
  onLoop();
}

// read the analog input
int SensorAnalogInput::_getAnalogRead() {
  // set the reference
  if (_reference != -1) {
    analogReference(_reference);
    sleep(100);
  }
  // read and return the value
  int value = analogRead(_pin);
  if (_reverse) value = _range_max - value;
  return value;
}

// return a percentage from an analog value
int SensorAnalogInput::_getPercentage(int adc) {
  float value = (float)adc;
  // scale the percentage based on the range provided
  float percentage = ((value - _range_min) / (_range_max - _range_min)) * 100;
  if (percentage > 100) percentage = 100;
  if (percentage < 0) percentage = 0;
  return (int)percentage;
}

/*
   SensorLDR
*/

// contructor
SensorLDR::SensorLDR(int child_id, int pin): SensorAnalogInput(child_id, pin) {
  // set presentation and type and reverse (0: no light, 100: max light)
  setPresentation(S_LIGHT_LEVEL);
  setType(V_LIGHT_LEVEL);
  setReverse(true);
}

/*
   SensorThermistor
*/

// contructor
SensorThermistor::SensorThermistor(int child_id, int pin): Sensor(child_id, pin) {
  // set presentation, type and value type
  setPresentation(S_TEMP);
  setType(V_TEMP);
  setValueType(TYPE_FLOAT);
}

// setter/getter
void SensorThermistor::setNominalResistor(int value) {
  _nominal_resistor = value;
}
void SensorThermistor::setNominalTemperature(int value) {
  _nominal_temperature = value;
}
void SensorThermistor::setBCoefficient(int value) {
  _b_coefficient = value;
}
void SensorThermistor::setSeriesResistor(int value) {
  _series_resistor = value;
}
void SensorThermistor::setOffset(float value) {
  _offset = value;
}

// what do to during setup
void SensorThermistor::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

// what do to during loop
void SensorThermistor::onLoop() {
  // read the voltage across the thermistor
  float adc = analogRead(_pin);
  // calculate the temperature
  float reading = (1023 / adc)  - 1;
  reading = _series_resistor / reading;
  float temperature;
  temperature = reading / _nominal_resistor;     // (R/Ro)
  temperature = log(temperature);                  // ln(R/Ro)
  temperature /= _b_coefficient;                   // 1/B * ln(R/Ro)
  temperature += 1.0 / (_nominal_temperature + 273.15); // + (1/To)
  temperature = 1.0 / temperature;                 // Invert
  temperature -= 273.15;                         // convert to C
  if (! getControllerConfig().isMetric) temperature = temperature * 1.8 + 32;
  #if DEBUG == 1
    Serial.print(" Thermistor id=");
    Serial.print(_child_id);
    Serial.print(", adc=");
    Serial.print(adc);
    Serial.print(", tmp=");
    Serial.println(temperature);
    Serial.print(", m=");
    Serial.println(getControllerConfig().isMetric);
  #endif
  // store the value
  _value_float = temperature;
}

// what do to as the main task when receiving a message
void SensorThermistor::onReceive(const MyMessage & message) {
  onLoop();
}

/*
   SensorDigitalInput
*/

// contructor
SensorDigitalInput::SensorDigitalInput(int child_id, int pin): Sensor(child_id, pin) {
}

// what do to during setup
void SensorDigitalInput::onBefore() {
  // set the pin for input
  pinMode(_pin, INPUT);
}

// what do to during loop
void SensorDigitalInput::onLoop() {
  // read the value
  int value = digitalRead(_pin);
  #if DEBUG == 1
    Serial.print("DigitalInput id=");
    Serial.print(_child_id);
    Serial.print(", pin=");
    Serial.print(_pin);
    Serial.print(", val=");
    Serial.println(value);
  #endif
  // store the value
  _value_int = value;
}

// what do to as the main task when receiving a message
void SensorDigitalInput::onReceive(const MyMessage & message) {
  onLoop();
}


/*
   SensorDigitalOutput
*/

// contructor
SensorDigitalOutput::SensorDigitalOutput(int child_id, int pin): Sensor(child_id, pin) {
}

void SensorDigitalOutput::onBefore() {
  // set the pin as output and initialize it accordingly
  pinMode(_pin, OUTPUT);
  digitalWrite(_pin, _initial_value == LOW ? LOW : HIGH);
  // the initial value is now the current value
  _value_int = _initial_value;
}

// setter/getter
void SensorDigitalOutput::setInitialValue(int value) {
  _initial_value = value;
}
void SensorDigitalOutput::setPulseWidth(int value) {
  _pulse_width = value;
}

// main task
void SensorDigitalOutput::onLoop() {
  // do nothing on loop
}

// what do to as the main task when receiving a message
void SensorDigitalOutput::onReceive(const MyMessage & message) {
  // retrieve from the message the value to set
  int value = message.getInt();
  if (value != 0 && value != 1) return;
  #if DEBUG == 1
    Serial.print("DigitalOutput id=");
    Serial.print(_child_id);
    Serial.print(", pin=");
    Serial.print(_pin);
    Serial.print(", init=");
    Serial.print(_initial_value);
    Serial.print(", val=");
    Serial.print(value);
    Serial.print(", pls=");
    Serial.println(_pulse_width);
  #endif
  // set the value
  digitalWrite(_pin, value);
  if (_pulse_width > 0) {
    // if this is a pulse output, restore the value to the original value after the pulse
    sleep(_pulse_width);
    digitalWrite(_pin, value == 0 ? HIGH: LOW);
  }
  // store the current value
  _value_int = value;
}

/*
   SensorRelay
*/

// contructor
SensorRelay::SensorRelay(int child_id, int pin): SensorDigitalOutput(child_id, pin) {
  // set presentation and type
  setPresentation(S_BINARY);
  setType(V_STATUS);
}

/*
   SensorLatchingRelay
*/

// contructor
SensorLatchingRelay::SensorLatchingRelay(int child_id, int pin): SensorRelay(child_id, pin) {
  // like a sensor with a default pulse set
  setPulseWidth(50);
}

/*
   SensorDHT
*/
#if MODULE_DHT == 1
// contructor
SensorDHT::SensorDHT(int child_id, int pin, DHT* dht, int sensor_type, int dht_type): Sensor(child_id, pin) {
  // store the dht object
  _dht = dht;
  // store the sensor type (0: temperature, 1: humidity)
  _sensor_type = sensor_type;
  _dht_type = dht_type;
  if (_sensor_type == 0) {
    // temperature sensor
    setPresentation(S_TEMP);
    setType(V_TEMP);
    setValueType(TYPE_FLOAT);
  }
  else if (_sensor_type == 1) {
    // humidity sensor
    setPresentation(S_HUM);
    setType(V_HUM);
    setValueType(TYPE_FLOAT);
  }
}

// what do to during setup
void SensorDHT::onBefore() {
    // initialize the dht library
    _dht->begin();
}

// what do to during loop
void SensorDHT::onLoop() {
  // temperature sensor
  if (_sensor_type == 0) {
    // read the temperature
    float temperature = _dht->readTemperature();
    // convert it
    if (! getControllerConfig().isMetric) temperature = temperature * 1.8 + 32;
    #if DEBUG == 1
      Serial.print(" DHT id=");
      Serial.print(_child_id);
      Serial.print(", tmp=");
      Serial.println(temperature);
    #endif
    // store the value
    if (! isnan(temperature)) _value_float = temperature;
  }
  // humidity sensor
  else if (_sensor_type == 1) {
    // read humidity
    float humidity = _dht->readHumidity();
    if (isnan(humidity)) return;
    #if DEBUG == 1
      Serial.print(" DHT id=");
      Serial.print(_child_id);
      Serial.print(", %=");
      Serial.println(humidity);
    #endif
    // store the value
    if (! isnan(humidity)) _value_float = humidity;
  }
}

// what do to as the main task when receiving a message
void SensorDHT::onReceive(const MyMessage & message) {
  onLoop();
}
#endif

/*
   SensorSHT21
*/
#if MODULE_SHT21 == 1
// contructor
SensorSHT21::SensorSHT21(int child_id, int sensor_type): Sensor(child_id, -1) {
  // store the sensor type (0: temperature, 1: humidity)
  _sensor_type = sensor_type;
  if (_sensor_type == 0) {
    // temperature sensor
    setPresentation(S_TEMP);
    setType(V_TEMP);
    setValueType(TYPE_FLOAT);
  }
  else if (_sensor_type == 1) {
    // humidity sensor
    setPresentation(S_HUM);
    setType(V_HUM);
    setValueType(TYPE_FLOAT);
  }
}

// what do to during setup
void SensorSHT21::onBefore() {
  // initialize the library
  Wire.begin();
}

// what do to during loop
void SensorSHT21::onLoop() {
  // temperature sensor
  if (_sensor_type == 0) {
    // read the temperature
    float temperature = SHT2x.GetTemperature();
    // convert it
    if (! getControllerConfig().isMetric) temperature = temperature * 1.8 + 32;
    #if DEBUG == 1
      Serial.print(" SHT21 id=");
      Serial.print(_child_id);
      Serial.print(", tmp=");
      Serial.println(temperature);
    #endif
    // store the value
    if (! isnan(temperature)) _value_float = temperature;
  }
  // Humidity Sensor
  else if (_sensor_type == 1) {
    // read humidity
    float humidity = SHT2x.GetHumidity();
    if (isnan(humidity)) return;
    #if DEBUG == 1
      Serial.print(" SHT21 id=");
      Serial.print(_child_id);
      Serial.print(", %=");
      Serial.println(humidity);
    #endif
    // store the value
    if (! isnan(humidity)) _value_float = humidity;
  }
}

// what do to as the main task when receiving a message
void SensorSHT21::onReceive(const MyMessage & message) {
  onLoop();
}
#endif

/*
 * SensorSwitch
 */
SensorSwitch::SensorSwitch(int child_id, int pin): Sensor(child_id,pin) {
  setType(V_TRIPPED);
}

// setter/getter
void SensorSwitch::setMode(int value) {
  _mode = value;
}
int SensorSwitch::getMode() {
  return _mode;
}
// setter/getter
void SensorSwitch::setDebounce(int value) {
  _debounce = value;
}
// setter/getter
void SensorSwitch::setTriggerTime(int value) {
  _trigger_time = value;
}

// what do to during setup
void SensorSwitch::onBefore() {
  // initialize the value
  if (_mode == RISING) _value_int = LOW;
  else if (_mode == FALLING) _value_int = HIGH;
}

// what do to during loop
void SensorSwitch::onLoop() {
  // wait to ensure the the input is not floating
  if (_debounce > 0) sleep(_debounce);
  // read the value of the pin
  int value = digitalRead(_pin);
  // process the value
  if ( (_mode == RISING && value == HIGH ) || (_mode == FALLING && value == LOW) || (_mode == CHANGE) )  {
    #if DEBUG == 1
      Serial.print("Switch id=");
      Serial.print(_child_id);
      Serial.print(", pin=");
      Serial.print(_pin);
      Serial.print(", val=");
      Serial.println(value);
    #endif
    _value_int = value;
    // allow the signal to be restored to its normal value
    if (_trigger_time > 0) sleep(_trigger_time);
  } else {
    // invalid
    _value_int = -1;
  }
}
// what do to as the main task when receiving a message
void SensorSwitch::onReceive(const MyMessage & message) {
  onLoop();
}

/*
 * SensorDoor
 */
SensorDoor::SensorDoor(int child_id, int pin): SensorSwitch(child_id,pin) {
  setPresentation(S_DOOR);
}

/*
 * SensorMotion
 */
SensorMotion::SensorMotion(int child_id, int pin): SensorSwitch(child_id,pin) {
  setPresentation(S_MOTION);
  // capture only when it triggers
  setMode(RISING);
}

/*
   SensorDs18b20
*/
#if MODULE_DS18B20 == 1
// contructor
SensorDs18b20::SensorDs18b20(int child_id, int pin, DallasTemperature* sensors, int index): Sensor(child_id, pin) {
  setPresentation(S_TEMP);
  setType(V_TEMP);
  setValueType(TYPE_FLOAT);
  _index = index;
  _sensors = sensors;
}

// what do to during setup
void SensorDs18b20::onBefore() {
}

// what do to during loop
void SensorDs18b20::onLoop() {
  // request the temperature
  _sensors->requestTemperaturesByIndex(_index);
  // read the temperature
  float temperature = _sensors->getTempCByIndex(_index);
  // convert it
  if (! getControllerConfig().isMetric) temperature = temperature * 1.8 + 32;
  #if DEBUG == 1
    Serial.print(" Ds18b20 id=");
    Serial.print(_child_id);
    Serial.print(", tmp=");
    Serial.println(temperature);
  #endif
  // store the value
  _value_float = temperature;
}

// what do to as the main task when receiving a message
void SensorDs18b20::onReceive(const MyMessage & message) {
  onLoop();
}


#endif

/*******************************************
   NodeManager
*/

// initialize the node manager
NodeManager::NodeManager() {
  // setup the service message container
  _msg = MyMessage(CONFIGURATION_CHILD_ID, V_CUSTOM);
}

// setter/getter
void NodeManager::setRebootPin(int value) {
    _reboot_pin = value;
}
#if BATTERY_MANAGER == 1
  void NodeManager::setBatteryMin(float value) {
    _battery_min = value;
  }
  void NodeManager::setBatteryMax(float value) {
    _battery_max = value;
  }
  void NodeManager::setBatteryReportCycles(int value) {
    _battery_report_cycles = value;
  }
#endif
#if SLEEP_MANAGER == 1
  void NodeManager::setSleepMode(int value) {
    _sleep_mode = value;
  }
  void NodeManager::setSleepTime(int value) {
    _sleep_time = value;
  }
  void NodeManager::setSleepUnit(int value) {
    _sleep_unit = value;
  }
  void NodeManager::setSleep(int value1, int value2, int value3) {
    _sleep_mode = value1;
    _sleep_time = value1;
    _sleep_unit = value3;
  }
  void NodeManager::setSleepInterruptPin(int value) {
    _sleep_interrupt_pin = value;
  }
#endif
void NodeManager::setInterrupt(int pin, int mode, int pull = -1) {
  if (pin == INTERRUPT_PIN_1) {
    _interrupt_1_mode = mode;
    _interrupt_1_pull = pull;
  }
  if (pin == INTERRUPT_PIN_2) {
    _interrupt_2_mode = mode;
    _interrupt_2_pull = pull;
  }
}
#if POWER_MANAGER == 1
  void NodeManager::setPowerPins(int ground_pin, int vcc_pin, long wait = 10) {
    _powerManager.setPowerPins(ground_pin, vcc_pin, wait);
  }
  void NodeManager::powerOn() {
    _powerManager.powerOn();
  }
  void NodeManager::powerOff() {
    _powerManager.powerOff();
  }
#endif

// register a sensor to this manager
int NodeManager::registerSensor(int sensor_type, int pin = -1, int child_id = -1) {
  #if DEBUG == 1
    if (_startup) {
      Serial.print("NodeManager v");
      Serial.println(VERSION);
      _startup = false;
    }
  #endif
  // get a child_id if not provided by the user
  if (child_id < 0) child_id = _getAvailableChildId();
  // based on the given sensor type instantiate the appropriate class
  if (sensor_type == 0) return;
  #if MODULE_ANALOG_INPUT == 1
    else if (sensor_type == SENSOR_ANALOG_INPUT) return registerSensor(new SensorAnalogInput(child_id, pin));
    else if (sensor_type == SENSOR_LDR) return registerSensor(new SensorLDR(child_id, pin));
    else if (sensor_type == SENSOR_THERMISTOR) return registerSensor(new SensorThermistor(child_id, pin));
  #endif
  #if MODULE_DIGITAL_INPUT == 1
    else if (sensor_type == SENSOR_DIGITAL_INPUT) return registerSensor(new SensorDigitalInput(child_id, pin));
  #endif
  #if MODULE_DIGITAL_OUTPUT == 1
    else if (sensor_type == SENSOR_DIGITAL_OUTPUT) return registerSensor(new SensorDigitalOutput(child_id, pin));
    else if (sensor_type == SENSOR_RELAY) return registerSensor(new SensorRelay(child_id, pin));
    else if (sensor_type == SENSOR_LATCHING_RELAY) return registerSensor(new SensorLatchingRelay(child_id, pin));
  #endif
  #if MODULE_DHT == 1
    else if (sensor_type == SENSOR_DHT11 || sensor_type == SENSOR_DHT22) {
      DHT* dht = new DHT(pin,DHT22);
      int dht_type = sensor_type == SENSOR_DHT11 ? DHT11 : DHT22;
      registerSensor(new SensorDHT(child_id,pin,dht,0,dht_type));
      child_id = _getAvailableChildId();
      registerSensor(new SensorDHT(child_id,pin,dht,1,dht_type));
    }
  #endif
  #if MODULE_SHT21 == 1
    else if (sensor_type == SENSOR_SHT21) {
      registerSensor(new SensorSHT21(child_id,0));
      child_id = _getAvailableChildId();
      registerSensor(new SensorSHT21(child_id,1));
    }
  #endif
  #if MODULE_SWITCH == 1
    else if (sensor_type == SENSOR_SWITCH || sensor_type == SENSOR_DOOR || sensor_type == SENSOR_MOTION) {
      // ensure an interrupt pin is provided
      if (pin != INTERRUPT_PIN_1 && pin != INTERRUPT_PIN_2) return;
      // register the sensor
      int index = 0;
      if (sensor_type == SENSOR_SWITCH) index = registerSensor(new SensorSwitch(child_id, pin));
      else if (sensor_type == SENSOR_DOOR) index = registerSensor(new SensorDoor(child_id, pin));
      else if (sensor_type == SENSOR_MOTION) index = registerSensor(new SensorMotion(child_id, pin));
      // set an interrupt on the pin and activate internal pull up
      setInterrupt(pin,((SensorSwitch*)get(index))->getMode(),HIGH);
      return index;
    }
  #endif
  #if MODULE_DS18B20 == 1
    else if (sensor_type == SENSOR_DS18B20) {
      // initialize the library
      OneWire* oneWire = new OneWire(pin);
      DallasTemperature* sensors = new DallasTemperature(oneWire);
      // initialize the sensors
      sensors->begin();
      // register a new child for each sensor on the bus
      for(int i = 0; i < sensors->getDeviceCount(); i++) {
        if (i > 0) child_id = _getAvailableChildId();
        registerSensor(new SensorDs18b20(child_id,pin,sensors,i));
      }
    }
  #endif
  else {
    #if DEBUG == 1
      Serial.print("Invalid sensor type=");
      Serial.println(sensor_type);
    #endif
    return -1;
  };
}

// attach a built-in or custom sensor to this manager
int NodeManager::registerSensor(Sensor* sensor) {
  #if DEBUG == 1
    Serial.print("Register id=");
    Serial.print(sensor->getChildId());
    Serial.print(", pin=");
    Serial.print(sensor->getPin());
    Serial.print(", pres=");
    Serial.print(sensor->getPresentation());
    Serial.print(", type=");
    Serial.println(sensor->getType());
  #endif
  // add the sensor to the array of registered sensors
  _sensors[sensor->getChildId()] = sensor;
  // return the child_id
  return sensor->getChildId();
}

// return a sensor given its index
Sensor* NodeManager::get(int child_id) {
  // return a pointer to the sensor from the given child_id
  return _sensors[child_id];
}

// setup NodeManager
void NodeManager::before() {
  #if DEBUG == 1
    Serial.print("node_id=");
    Serial.print(getNodeId());
    Serial.print(", metric=");
    Serial.println(getControllerConfig().isMetric);
  #endif
  if (_reboot_pin > -1) {
    #if DEBUG == 1
      Serial.print("Reboot pin=");
      Serial.println(_reboot_pin);
    #endif
    // setup the reboot pin
    pinMode(_reboot_pin, OUTPUT);
    digitalWrite(_reboot_pin, HIGH);
  }
  // setup the sleep interrupt pin
  if (_sleep_interrupt_pin > -1) {
    // set the interrupt when the pin is connected to ground
    setInterrupt(_sleep_interrupt_pin,FALLING,HIGH);
  }
  // setup the interrupt pins
  if (_interrupt_1_mode != MODE_NOT_DEFINED) {
    pinMode(INTERRUPT_PIN_1,INPUT);
    if (_interrupt_1_pull > -1) digitalWrite(INTERRUPT_PIN_1,_interrupt_1_pull);
  }
  if (_interrupt_2_mode != MODE_NOT_DEFINED) {
    pinMode(INTERRUPT_PIN_2, INPUT);
    if (_interrupt_2_pull > -1) digitalWrite(INTERRUPT_PIN_2,_interrupt_2_pull);
  }
  #if DEBUG == 1
    Serial.print("Interrupt1 mode=");
    Serial.println(_interrupt_1_mode);
    Serial.print("Interrupt2 mode=");
    Serial.println(_interrupt_2_mode);
  #endif
  #if REMOTE_CONFIGURATION == 1 && SLEEP_MANAGER == 1 && PERSIST == 1
    // restore sleep configuration from eeprom
    if (loadState(EEPROM_SLEEP_SAVED) == 1) {
      // sleep settings found in the eeprom, restore them
      _sleep_mode = loadState(EEPROM_SLEEP_MODE);
      _sleep_time = loadState(EEPROM_SLEEP_TIME_MINOR);
      int major = loadState(EEPROM_SLEEP_TIME_MAJOR);
      if (major == 1) _sleep_time =  _sleep_time + 250;
      else if (major == 2) _sleep_time =  _sleep_time + 250 * 2;
      else if (major == 3) _sleep_time =  _sleep_time + 250 * 3;
      _sleep_unit = loadState(EEPROM_SLEEP_UNIT);
      #if DEBUG == 1
        Serial.print("Load sleep mode=");
        Serial.print(_sleep_mode);
        Serial.print(" time=");
        Serial.print(_sleep_time);
        Serial.print(" unit=");
        Serial.println(_sleep_unit);
      #endif