NodeManager.cpp 74.8 KB
Newer Older
DV's avatar
DV committed
1
2
3
4
5
6
/*
 * NodeManager
 */

#include "NodeManager.h"

7
8
9
10
11
12
/***************************************
   Global functions
*/

// return vcc in V
float getVcc() {
13
14
15
16
17
18
19
20
21
22
23
24
  #ifndef MY_GATEWAY_ESP8266
    // Measure Vcc against 1.1V Vref
    #if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
      ADMUX = (_BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1));
    #elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
      ADMUX = (_BV(MUX5) | _BV(MUX0));
    #elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
      ADMUX = (_BV(MUX3) | _BV(MUX2));
    #else
      ADMUX = (_BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1));
    #endif
    // Vref settle
user2684's avatar
user2684 committed
25
    wait(70);
26
27
28
29
30
    // Do conversion
    ADCSRA |= _BV(ADSC);
    while (bit_is_set(ADCSRA, ADSC)) {};
    // return Vcc in mV
    return (float)((1125300UL) / ADC) / 1000;
31
  #else
32
    return (float)0;
33
34
  #endif
}
DV's avatar
DV committed
35

36

DV's avatar
DV committed
37
38
39
40
41
/***************************************
   PowerManager
*/

// set the vcc and ground pin the sensor is connected to
user2684's avatar
user2684 committed
42
void PowerManager::setPowerPins(int ground_pin, int vcc_pin, int wait_time) {
DV's avatar
DV committed
43
  #if DEBUG == 1
44
    Serial.print(F("PWR G="));
DV's avatar
DV committed
45
    Serial.print(ground_pin);
46
    Serial.print(F(" V="));
DV's avatar
DV committed
47
    Serial.println(vcc_pin);
DV's avatar
DV committed
48
  #endif
user2684's avatar
user2684 committed
49
  // configure the vcc pin as output and initialize to high (power on)
DV's avatar
DV committed
50
51
  _vcc_pin = vcc_pin;
  pinMode(_vcc_pin, OUTPUT);
user2684's avatar
user2684 committed
52
  digitalWrite(_vcc_pin, HIGH);
DV's avatar
DV committed
53
54
55
56
  // configure the ground pin as output and initialize to low
  _ground_pin = ground_pin;
  pinMode(_ground_pin, OUTPUT);
  digitalWrite(_ground_pin, LOW);
user2684's avatar
user2684 committed
57
  _wait = wait_time;
DV's avatar
DV committed
58
59
60
}

// return true if power pins have been configured
user2684's avatar
user2684 committed
61
bool PowerManager::isConfigured() {
DV's avatar
DV committed
62
63
64
65
66
67
  if (_vcc_pin != -1 && _ground_pin != -1) return true;
  return false;
}

// turn on the sensor by activating its power pins
void PowerManager::powerOn() {
user2684's avatar
user2684 committed
68
  if (! isConfigured()) return;
DV's avatar
DV committed
69
  #if DEBUG == 1
70
    Serial.print(F("ON P="));
DV's avatar
DV committed
71
72
73
74
75
    Serial.println(_vcc_pin);
  #endif
  // power on the sensor by turning high the vcc pin
  digitalWrite(_vcc_pin, HIGH);
  // wait a bit for the device to settle down
76
  if (_wait > 0) wait(_wait);
DV's avatar
DV committed
77
78
79
80
}

// turn off the sensor
void PowerManager::powerOff() {
user2684's avatar
user2684 committed
81
  if (! isConfigured()) return;
DV's avatar
DV committed
82
  #if DEBUG == 1
83
    Serial.print(F("OFF P="));
DV's avatar
DV committed
84
85
86
87
88
89
    Serial.println(_vcc_pin);
  #endif
  // power off the sensor by turning low the vcc pin
  digitalWrite(_vcc_pin, LOW);
}

90

DV's avatar
DV committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/******************************************
    Sensors
*/

/*
   Sensor class
*/
// constructor
Sensor::Sensor(int child_id, int pin) {
  _child_id = child_id;
  _pin = pin;
  _msg = MyMessage(_child_id, _type);
}

// setter/getter
void Sensor::setPin(int value) {
  _pin = value;
}
int Sensor::getPin() {
  return _pin;
}
void Sensor::setChildId(int value) {
  _child_id = value;
}
int Sensor::getChildId() {
  return _child_id;
}
void Sensor::setPresentation(int value) {
  _presentation = value;
}
int Sensor::getPresentation() {
  return _presentation;
}
void Sensor::setType(int value) {
  _type = value;
  _msg.setType(_type);
}
int Sensor::getType() {
  return _type;
}
user2684's avatar
user2684 committed
131
132
133
void Sensor::setDescription(char* value) {
  _description = value;
}
user2684's avatar
user2684 committed
134
135
136
void Sensor::setAck(bool value) {
  _ack = value;
}
DV's avatar
DV committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
void Sensor::setRetries(int value) {
  _retries = value;
}
void Sensor::setSamples(int value) {
  _samples = value;
}
void Sensor::setSamplesInterval(int value) {
  _samples_interval = value;
}
void Sensor::setTackLastValue(bool value) {
  _track_last_value = value;
}
void Sensor::setForceUpdate(int value) {
  _force_update = value;
}
void Sensor::setValueType(int value) {
  _value_type = value;
}
void Sensor::setFloatPrecision(int value) {
  _float_precision = value;
}
#if POWER_MANAGER == 1
user2684's avatar
user2684 committed
159
160
    void Sensor::setPowerPins(int ground_pin, int vcc_pin, int wait_time) {
      _powerManager.setPowerPins(ground_pin, vcc_pin, wait_time);
DV's avatar
DV committed
161
    }
DV's avatar
DV committed
162
163
164
    void Sensor::setAutoPowerPins(bool value) {
      _auto_power_pins = value;
    }
DV's avatar
DV committed
165
166
167
168
169
170
171
    void Sensor::powerOn() {
      _powerManager.powerOn();
    }
    void Sensor::powerOff() {
      _powerManager.powerOff();
    }
#endif
DV's avatar
DV committed
172
173
174
void Sensor::setSleepBetweenSend(int value) {
  _sleep_between_send = value;
}
175
176
177
178
179
180
void Sensor::setInterruptPin(int value) {
  _interrupt_pin = value;
}
int Sensor::getInterruptPin() {
  return _interrupt_pin;
}
DV's avatar
DV committed
181
182
183
184

// present the sensor to the gateway and controller
void Sensor::presentation() {
  #if DEBUG == 1
185
    Serial.print(F("PRES I="));
DV's avatar
DV committed
186
    Serial.print(_child_id);
187
    Serial.print(F(" T="));
DV's avatar
DV committed
188
189
    Serial.println(_presentation);
  #endif
user2684's avatar
user2684 committed
190
  present(_child_id, _presentation,_description,_ack);
DV's avatar
DV committed
191
192
193
194
195
196
197
198
}

// call the sensor-specific implementation of before
void Sensor::before() {
  if (_pin == -1) return;
  onBefore();
}

user2684's avatar
user2684 committed
199
200
201
202
203
204
// call the sensor-specific implementation of setup
void Sensor::setup() {
  if (_pin == -1) return;
  onSetup();
}

DV's avatar
DV committed
205
206
207
208
209
// call the sensor-specific implementation of loop
void Sensor::loop(const MyMessage & message) {
  if (_pin == -1) return;
  #if POWER_MANAGER == 1
    // turn the sensor on
DV's avatar
DV committed
210
    if (_auto_power_pins) powerOn();
DV's avatar
DV committed
211
212
213
214
  #endif
  // for numeric sensor requiring multiple samples, keep track of the total
  float total = 0;
  // keep track of the number of cycles since the last update
215
  if (_force_update > 0) _cycles++;
DV's avatar
DV committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
  // collect multiple samples if needed
  for (int i = 0; i < _samples; i++) {
    // call the sensor-specific implementation of the main task which will store the result in the _value variable
    if (message.sender == 0 && message.sensor == 0 && message.getCommand() == 0 && message.type == 0) {
      // empty message, we'be been called from loop()
      onLoop();
    }
    else {
      // we've been called from receive(), pass the message along
      onReceive(message);
    }
    // for integers and floats, keep track of the total
    if (_value_type == TYPE_INTEGER) total += (float)_value_int;
    else if (_value_type == TYPE_FLOAT) total += _value_float;
    // wait between samples
231
    if (_samples_interval > 0) wait(_samples_interval);
DV's avatar
DV committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
  }
  // process the result and send a response back. 
  if (_value_type == TYPE_INTEGER && total > -1) {
    // if the value is an integer, calculate the average value of the samples
    int avg = (int) (total / _samples);
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && avg != _last_value_int) || (_track_last_value && _force_update > 0 && _cycles > _force_update)) {
      _cycles = 0;
      _last_value_int = avg;
      _send(_msg.set(avg));
    }
  }
  // process a float value
  else if (_value_type == TYPE_FLOAT && total > -1) {
    // calculate the average value of the samples
    float avg = total / _samples;
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && avg != _last_value_float) || (_track_last_value && _cycles >= _force_update)) {
      _cycles = 0;
      _last_value_float = avg;
      _send(_msg.set(avg, _float_precision));
    }
  }
  // process a string value
  else if (_value_type == TYPE_STRING) {
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && strcmp(_value_string, _last_value_string) != 0) || (_track_last_value && _cycles >= _force_update)) {
      _cycles = 0;
      _last_value_string = _value_string;
      _send(_msg.set(_value_string));
    }
  }
  // turn the sensor off
  #if POWER_MANAGER == 1
DV's avatar
DV committed
266
    if (_auto_power_pins) powerOff();
DV's avatar
DV committed
267
268
269
270
271
272
273
  #endif
}

// receive a message from the radio network
void Sensor::receive(const MyMessage &message) {
  // return if not for this sensor
  if (message.sensor != _child_id || message.type != _type) return;
274
  // a request would make the sensor executing its main task passing along the message
DV's avatar
DV committed
275
276
277
278
279
280
281
  loop(message);
}

// send a message to the network
void Sensor::_send(MyMessage & message) {
  // send the message, multiple times if requested
  for (int i = 0; i < _retries; i++) {
DV's avatar
DV committed
282
    // if configured, sleep beetween each send
283
    if (_sleep_between_send > 0) sleep(_sleep_between_send);
DV's avatar
DV committed
284
    #if DEBUG == 1
285
      Serial.print(F("SEND D="));
DV's avatar
DV committed
286
      Serial.print(message.destination);
287
      Serial.print(F(" I="));
DV's avatar
DV committed
288
      Serial.print(message.sensor);
289
      Serial.print(F(" C="));
DV's avatar
DV committed
290
      Serial.print(message.getCommand());
291
      Serial.print(F(" T="));
DV's avatar
DV committed
292
      Serial.print(message.type);
293
      Serial.print(F(" S="));
DV's avatar
DV committed
294
      Serial.print(message.getString());
295
      Serial.print(F(" I="));
DV's avatar
DV committed
296
      Serial.print(message.getInt());
297
      Serial.print(F(" F="));
DV's avatar
DV committed
298
299
      Serial.println(message.getFloat());
    #endif
user2684's avatar
user2684 committed
300
    send(message,_ack);
DV's avatar
DV committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
  }
}

/*
   SensorAnalogInput
*/

// contructor
SensorAnalogInput::SensorAnalogInput(int child_id, int pin): Sensor(child_id, pin) {
}

// setter/getter
void SensorAnalogInput::setReference(int value) {
  _reference = value;
}
void SensorAnalogInput::setReverse(bool value) {
  _reverse = value;
}
void SensorAnalogInput::setOutputPercentage(bool value) {
  _output_percentage = value;
}
void SensorAnalogInput::setRangeMin(int value) {
  _range_min = value;
}
void SensorAnalogInput::setRangeMax(int value) {
  _range_max = value;
}

329
// what to do during before
DV's avatar
DV committed
330
331
332
333
334
void SensorAnalogInput::onBefore() {
  // prepare the pin for input
  pinMode(_pin, INPUT);
}

335
// what to do during setup
user2684's avatar
user2684 committed
336
337
338
void SensorAnalogInput::onSetup() {
}

339
// what to do during loop
DV's avatar
DV committed
340
341
342
343
344
345
346
void SensorAnalogInput::onLoop() {
  // read the input
  int adc = _getAnalogRead();
  // calculate the percentage
  int percentage = 0;
  if (_output_percentage) percentage = _getPercentage(adc);
  #if DEBUG == 1
347
    Serial.print(F("A-IN I="));
DV's avatar
DV committed
348
    Serial.print(_child_id);
349
    Serial.print(F(" V="));
DV's avatar
DV committed
350
    Serial.print(adc);
351
    Serial.print(F(" %="));
DV's avatar
DV committed
352
353
354
355
356
357
    Serial.println(percentage);
  #endif
  // store the result
  _value_int = _output_percentage ? percentage : adc;
}

358
// what to do during loop
DV's avatar
DV committed
359
void SensorAnalogInput::onReceive(const MyMessage & message) {
360
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
361
362
363
364
}

// read the analog input
int SensorAnalogInput::_getAnalogRead() {
365
366
367
368
369
370
371
  #ifndef MY_GATEWAY_ESP8266
    // set the reference
    if (_reference != -1) {
      analogReference(_reference);
      wait(100);
    }
  #endif
DV's avatar
DV committed
372
373
374
375
376
377
378
379
380
  // read and return the value
  int value = analogRead(_pin);
  if (_reverse) value = _range_max - value;
  return value;
}

// return a percentage from an analog value
int SensorAnalogInput::_getPercentage(int adc) {
  float value = (float)adc;
DV's avatar
DV committed
381
382
  // restore the original value
  if (_reverse) value = 1024 - value;
DV's avatar
DV committed
383
384
  // scale the percentage based on the range provided
  float percentage = ((value - _range_min) / (_range_max - _range_min)) * 100;
DV's avatar
DV committed
385
  if (_reverse) percentage = 100 - percentage;
DV's avatar
DV committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
  if (percentage > 100) percentage = 100;
  if (percentage < 0) percentage = 0;
  return (int)percentage;
}

/*
   SensorLDR
*/

// contructor
SensorLDR::SensorLDR(int child_id, int pin): SensorAnalogInput(child_id, pin) {
  // set presentation and type and reverse (0: no light, 100: max light)
  setPresentation(S_LIGHT_LEVEL);
  setType(V_LIGHT_LEVEL);
  setReverse(true);
}

/*
   SensorThermistor
*/

// contructor
SensorThermistor::SensorThermistor(int child_id, int pin): Sensor(child_id, pin) {
  // set presentation, type and value type
  setPresentation(S_TEMP);
  setType(V_TEMP);
  setValueType(TYPE_FLOAT);
}

// setter/getter
416
void SensorThermistor::setNominalResistor(long value) {
DV's avatar
DV committed
417
418
419
420
421
422
423
424
  _nominal_resistor = value;
}
void SensorThermistor::setNominalTemperature(int value) {
  _nominal_temperature = value;
}
void SensorThermistor::setBCoefficient(int value) {
  _b_coefficient = value;
}
425
void SensorThermistor::setSeriesResistor(long value) {
DV's avatar
DV committed
426
427
428
429
430
431
  _series_resistor = value;
}
void SensorThermistor::setOffset(float value) {
  _offset = value;
}

432
// what to do during before
DV's avatar
DV committed
433
434
435
436
437
void SensorThermistor::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

438
// what to do during setup
user2684's avatar
user2684 committed
439
440
441
void SensorThermistor::onSetup() {
}

442
// what to do during loop
DV's avatar
DV committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
void SensorThermistor::onLoop() {
  // read the voltage across the thermistor
  float adc = analogRead(_pin);
  // calculate the temperature
  float reading = (1023 / adc)  - 1;
  reading = _series_resistor / reading;
  float temperature;
  temperature = reading / _nominal_resistor;     // (R/Ro)
  temperature = log(temperature);                  // ln(R/Ro)
  temperature /= _b_coefficient;                   // 1/B * ln(R/Ro)
  temperature += 1.0 / (_nominal_temperature + 273.15); // + (1/To)
  temperature = 1.0 / temperature;                 // Invert
  temperature -= 273.15;                         // convert to C
  if (! getControllerConfig().isMetric) temperature = temperature * 1.8 + 32;
  #if DEBUG == 1
458
    Serial.print(F("THER I="));
DV's avatar
DV committed
459
    Serial.print(_child_id);
460
    Serial.print(F(" V="));
DV's avatar
DV committed
461
    Serial.print(adc);
462
    Serial.print(F(" T="));
463
    Serial.print(temperature);
464
    Serial.print(F(" M="));
DV's avatar
DV committed
465
466
467
468
469
470
    Serial.println(getControllerConfig().isMetric);
  #endif
  // store the value
  _value_float = temperature;
}

471
// what to do as the main task when receiving a message
DV's avatar
DV committed
472
void SensorThermistor::onReceive(const MyMessage & message) {
473
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
474
475
}

476
477
478
479
480
481
482
483
484
485
486
487
488

/*
   SensorML8511
*/

// contructor
SensorML8511::SensorML8511(int child_id, int pin): Sensor(child_id, pin) {
  // set presentation, type and value type
  setPresentation(S_UV);
  setType(V_UV);
  setValueType(TYPE_FLOAT);
}

489
// what to do during before
490
491
492
493
494
void SensorML8511::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

495
// what to do during setup
496
497
498
void SensorML8511::onSetup() {
}

499
// what to do during loop
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
void SensorML8511::onLoop() {
  // read the voltage 
  int uvLevel = analogRead(_pin);
  int refLevel = getVcc()*1024/3.3;
  //Use the 3.3V power pin as a reference to get a very accurate output value from sensor
  float outputVoltage = 3.3 / refLevel * uvLevel;
  //Convert the voltage to a UV intensity level
  float uvIntensity = _mapfloat(outputVoltage, 0.99, 2.8, 0.0, 15.0); 
  #if DEBUG == 1
    Serial.print(F("UV I="));
    Serial.print(_child_id);
    Serial.print(F(" V="));
    Serial.print(outputVoltage);
    Serial.print(F(" I="));
    Serial.println(uvIntensity);
  #endif
  // store the value
  _value_float = uvIntensity;
}

520
// what to do as the main task when receiving a message
521
void SensorML8511::onReceive(const MyMessage & message) {
522
  if (message.getCommand() == C_REQ) onLoop();
523
524
525
526
527
528
529
}

// The Arduino Map function but for floats
float SensorML8511::_mapfloat(float x, float in_min, float in_max, float out_min, float out_max) {
  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
/*
   SensorACS712
*/

// contructor
SensorACS712::SensorACS712(int child_id, int pin): Sensor(child_id, pin) {
  // set presentation, type and value type
  setPresentation(S_MULTIMETER);
  setType(V_CURRENT);
  setValueType(TYPE_FLOAT);
}

// setter/getter
void SensorACS712::setmVPerAmp(int value) {
  _mv_per_amp = value;
}
void SensorACS712::setOffset(int value) {
  _ACS_offset = value;
}

550
// what to do during before
551
552
553
554
555
void SensorACS712::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

556
// what to do during setup
557
558
559
void SensorACS712::onSetup() {
}

560
// what to do during loop
561
562
563
564
565
566
567
568
569
570
571
572
573
574
void SensorACS712::onLoop() {
  int value = analogRead(_pin);
  // convert the analog read in mV
  double voltage = (value / 1024.0) * 5000; 
  // convert voltage in amps
  _value_float = ((voltage - _ACS_offset) / _mv_per_amp);
  #if DEBUG == 1
    Serial.print(F("ACS I="));
    Serial.print(_child_id);
    Serial.print(F(" A="));
    Serial.println(_value_float);
  #endif
}

575
// what to do as the main task when receiving a message
576
577
578
579
void SensorACS712::onReceive(const MyMessage & message) {
  if (message.getCommand() == C_REQ) onLoop();
}

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
/*
   SensorRainGauge
*/

// contructor
SensorRainGauge::SensorRainGauge(int child_id, int pin): Sensor(child_id, pin) {
  // set presentation, type and value type
  setPresentation(S_RAIN);
  setType(V_RAIN);
  setValueType(TYPE_FLOAT);

}

// initialize static variables
long SensorRainGauge::_last_tip = 0;
long SensorRainGauge::_count = 0;

// setter/getter
void SensorRainGauge::setReportInterval(int value) {
  _report_interval = value;
}
void SensorRainGauge::setSingleTip(float value) {
  _single_tip = value;
}

// what to do during before
void SensorRainGauge::onBefore() {
  // set the pin as input and enabled pull up
  pinMode(_pin, INPUT_PULLUP);
  // attach to the pin's interrupt and execute the routine on falling
  attachInterrupt(digitalPinToInterrupt(_pin), _onTipped, FALLING);
}

// what to do during setup
void SensorRainGauge::onSetup() {
}

// what to do when when receiving an interrupt
void SensorRainGauge::_onTipped() {
  // on tipping, two consecutive interrupts are received, ignore the second one
  if (millis() - _last_tip > 100){
    // increase the counter
    _count++;
    #if DEBUG == 1
      Serial.println(F("RAIN+"));
    #endif
  }
  _last_tip = millis();
}

// what to do during loop
void SensorRainGauge::onLoop() {
  // avoid reporting the same value multiple times
  _value_float = -1;
  // time elapsed since the last report
  long elapsed = millis() - _last_report;
  // minimum time interval between reports
  long min_interval = ((long)_report_interval*1000)*60;
  // time to report
  if (elapsed > min_interval) {
    // report the total amount of rain for the last period
    _value_float = _count*_single_tip;
    #if DEBUG == 1
      Serial.print(F("RAIN I="));
      Serial.print(_child_id);
      Serial.print(F(" T="));
      Serial.println(_value_float);
    #endif
    // reset the counters
    _count = 0;
    _last_report = millis();
  }
}

// what to do as the main task when receiving a message
void SensorRainGauge::onReceive(const MyMessage & message) {
  if (message.getCommand() == C_REQ) {
    // report the total amount of rain for the last period
    _value_float = _count*_single_tip;    
  }
}

662

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
/*
 * SensorMQ
 */
SensorMQ::SensorMQ(int child_id, int pin): Sensor(child_id,pin) {
  setPresentation(S_AIR_QUALITY);
  setType(V_LEVEL);
}

//setter/getter
void SensorMQ::setRlValue(float value) {
  _rl_value = value;
}
void SensorMQ::setRoValue(float value) {
  _ro = value;
}
void SensorMQ::setCleanAirFactor(float value) {
  _ro_clean_air_factor = value;
}
void SensorMQ::setCalibrationSampleTimes(int value) {
  _calibration_sample_times = value;
}
void SensorMQ::setCalibrationSampleInterval(int value){
  _calibration_sample_interval = value;
}
void SensorMQ::setReadSampleTimes(int value) {
  _read_sample_times = value;
}
void SensorMQ::setReadSampleInterval(int value) {
  _read_sample_interval = value;
}
void SensorMQ::setLPGCurve(float *value) {
  _LPGCurve[0] = value[0];
  _LPGCurve[2] = value[1];
  _LPGCurve[2] = value[2];
}
void SensorMQ::setCOCurve(float *value) {
  _COCurve[0] = value[0];
  _COCurve[2] = value[1];
  _COCurve[2] = value[2];
}
void SensorMQ::setSmokeCurve(float *value) {
  _SmokeCurve[0] = value[0];
  _SmokeCurve[2] = value[1];
  _SmokeCurve[2] = value[2];
}

709
// what to do during before
710
711
712
713
714
void SensorMQ::onBefore() {
  // prepare the pin for input
  pinMode(_pin, INPUT);
}

715
// what to do during setup
716
717
718
719
void SensorMQ::onSetup() {
  _ro = _MQCalibration();
}

720
// what to do during loop
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
void SensorMQ::onLoop() {
  if (_pin == -1) return;
  // calculate rs/ro
  float mq = _MQRead()/_ro;
  // calculate the ppm
  float lpg = _MQGetGasPercentage(mq,_gas_lpg);
  float co = _MQGetGasPercentage(mq,_gas_co);
  float smoke = _MQGetGasPercentage(mq,_gas_smoke);
  // assign to the value the requested gas
  uint16_t value;
  if (_target_gas == _gas_lpg) value = lpg;
  if (_target_gas == _gas_co) value = co;
  if (_target_gas == _gas_smoke) value = smoke;
  #if DEBUG == 1
    Serial.print(F("MQ I="));
    Serial.print(_child_id);
    Serial.print(F(" V="));
    Serial.print(value);
    Serial.print(F(" LPG="));
    Serial.print(lpg);
    Serial.print(F(" CO="));
    Serial.print(co);
    Serial.print(F(" SMOKE="));
    Serial.println(smoke);
  #endif
  // store the value
  _value_int = (int16_t)ceil(value);
}

750
// what to do as the main task when receiving a message
751
void SensorMQ::onReceive(const MyMessage & message) {
752
  if (message.getCommand() == C_REQ) onLoop();
753
754
755
756
757
758
759
760
761
762
763
764
765
766
}

// returns the calculated sensor resistance
float SensorMQ::_MQResistanceCalculation(int raw_adc) {
  return ( ((float)_rl_value*(1023-raw_adc)/raw_adc));
}

//  This function assumes that the sensor is in clean air
float SensorMQ::_MQCalibration() {
  int i;
  float val=0;
  //take multiple samples
  for (i=0; i< _calibration_sample_times; i++) {  
    val += _MQResistanceCalculation(analogRead(_pin));
user2684's avatar
user2684 committed
767
    wait(_calibration_sample_interval);
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
  }
  //calculate the average value
  val = val/_calibration_sample_times;                   
  //divided by RO_CLEAN_AIR_FACTOR yields the Ro
  val = val/_ro_clean_air_factor;
  //according to the chart in the datasheet
  return val;
}

// This function use MQResistanceCalculation to caculate the sensor resistenc (Rs).
float SensorMQ::_MQRead() {
  int i;
  float rs=0;
  for (i=0; i<_read_sample_times; i++) {
    rs += _MQResistanceCalculation(analogRead(_pin));
user2684's avatar
user2684 committed
783
    wait(_read_sample_interval);
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
  }
  rs = rs/_read_sample_times;
  return rs;
}

// This function passes different curves to the MQGetPercentage function which calculates the ppm (parts per million) of the target gas.
int SensorMQ::_MQGetGasPercentage(float rs_ro_ratio, int gas_id) {
  if ( gas_id == _gas_lpg ) {
    return _MQGetPercentage(rs_ro_ratio,_LPGCurve);
  } else if ( gas_id == _gas_co) {
    return _MQGetPercentage(rs_ro_ratio,_COCurve);
  } else if ( gas_id == _gas_smoke) {
    return _MQGetPercentage(rs_ro_ratio,_SmokeCurve);
  }
  return 0;
}

// returns ppm of the target gas
int SensorMQ::_MQGetPercentage(float rs_ro_ratio, float *pcurve) {
  return (pow(10,( ((log10(rs_ro_ratio)-pcurve[1])/pcurve[2]) + pcurve[0])));
}


DV's avatar
DV committed
807
808
809
810
811
812
813
814
/*
   SensorDigitalInput
*/

// contructor
SensorDigitalInput::SensorDigitalInput(int child_id, int pin): Sensor(child_id, pin) {
}

815
// what to do during before
DV's avatar
DV committed
816
817
818
819
820
void SensorDigitalInput::onBefore() {
  // set the pin for input
  pinMode(_pin, INPUT);
}

821
// what to do during setup
user2684's avatar
user2684 committed
822
823
824
void SensorDigitalInput::onSetup() {
}

825
// what to do during loop
DV's avatar
DV committed
826
827
828
829
void SensorDigitalInput::onLoop() {
  // read the value
  int value = digitalRead(_pin);
  #if DEBUG == 1
830
    Serial.print(F("D-IN I="));
DV's avatar
DV committed
831
    Serial.print(_child_id);
832
    Serial.print(F(" P="));
DV's avatar
DV committed
833
    Serial.print(_pin);
834
    Serial.print(F(" V="));
DV's avatar
DV committed
835
836
837
838
839
840
    Serial.println(value);
  #endif
  // store the value
  _value_int = value;
}

841
// what to do as the main task when receiving a message
DV's avatar
DV committed
842
void SensorDigitalInput::onReceive(const MyMessage & message) {
843
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
844
845
846
847
848
849
850
851
852
853
854
}


/*
   SensorDigitalOutput
*/

// contructor
SensorDigitalOutput::SensorDigitalOutput(int child_id, int pin): Sensor(child_id, pin) {
}

855
// what to do during before
DV's avatar
DV committed
856
857
858
void SensorDigitalOutput::onBefore() {
  // set the pin as output and initialize it accordingly
  pinMode(_pin, OUTPUT);
859
860
  _state = _initial_value == LOW ? LOW : HIGH;
  digitalWrite(_pin, _state);
DV's avatar
DV committed
861
862
863
864
  // the initial value is now the current value
  _value_int = _initial_value;
}

865
// what to do during setup
user2684's avatar
user2684 committed
866
867
868
void SensorDigitalOutput::onSetup() {
}

DV's avatar
DV committed
869
870
871
872
873
874
875
// setter/getter
void SensorDigitalOutput::setInitialValue(int value) {
  _initial_value = value;
}
void SensorDigitalOutput::setPulseWidth(int value) {
  _pulse_width = value;
}
876
877
878
void SensorDigitalOutput::setOnValue(int value) {
  _on_value = value;
}
DV's avatar
DV committed
879
880
881
882
883
884

// main task
void SensorDigitalOutput::onLoop() {
  // do nothing on loop
}

885
// what to do as the main task when receiving a message
DV's avatar
DV committed
886
void SensorDigitalOutput::onReceive(const MyMessage & message) {
887
888
889
890
891
892
893
894
895
896
897
898
899
900
  if (message.getCommand() == C_SET) {
    // retrieve from the message the value to set
    int value = message.getInt();
    if (value != 0 && value != 1) return;
    #if DEBUG == 1
      Serial.print(F("DOUT I="));
      Serial.print(_child_id);
      Serial.print(F(" P="));
      Serial.print(_pin);
      Serial.print(F(" V="));
      Serial.print(value);
      Serial.print(F(" P="));
      Serial.println(_pulse_width);
    #endif
901
902
903
904
905
906
    // reverse the value if needed
    int value_to_write = value;
    if (_on_value == LOW) {
      if (value == HIGH) value_to_write = LOW;
      if (value == LOW) value_to_write = HIGH;
    }
907
    // set the value
908
    digitalWrite(_pin, value_to_write);
909
910
911
    if (_pulse_width > 0) {
      // if this is a pulse output, restore the value to the original value after the pulse
      wait(_pulse_width);
912
      digitalWrite(_pin, value_to_write == 0 ? HIGH: LOW);
913
914
    }
    // store the current value so it will be sent to the controller
915
    _state = value;
916
917
918
919
920
921
    _value_int = value;
  }
  if (message.getCommand() == C_REQ) {
    // return the current status
    _value_int = _state;
  }
DV's avatar
DV committed
922
923
924
925
926
927
928
929
930
931
932
933
934
}

/*
   SensorRelay
*/

// contructor
SensorRelay::SensorRelay(int child_id, int pin): SensorDigitalOutput(child_id, pin) {
  // set presentation and type
  setPresentation(S_BINARY);
  setType(V_STATUS);
}

DV's avatar
DV committed
935
936
937
938
939
940
// define what to do during loop
void SensorRelay::onLoop() {
    // set the value to -1 so to avoid reporting to the gateway during loop
    _value_int = -1;
}

DV's avatar
DV committed
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
/*
   SensorLatchingRelay
*/

// contructor
SensorLatchingRelay::SensorLatchingRelay(int child_id, int pin): SensorRelay(child_id, pin) {
  // like a sensor with a default pulse set
  setPulseWidth(50);
}

/*
   SensorDHT
*/
#if MODULE_DHT == 1
// contructor
SensorDHT::SensorDHT(int child_id, int pin, DHT* dht, int sensor_type, int dht_type): Sensor(child_id, pin) {
  // store the dht object
  _dht = dht;
  _sensor_type = sensor_type;
  _dht_type = dht_type;
961
  if (_sensor_type == SensorDHT::TEMPERATURE) {
DV's avatar
DV committed
962
963
964
965
966
    // temperature sensor
    setPresentation(S_TEMP);
    setType(V_TEMP);
    setValueType(TYPE_FLOAT);
  }
967
  else if (_sensor_type == SensorDHT::HUMIDITY) {
DV's avatar
DV committed
968
969
970
971
972
973
974
    // humidity sensor
    setPresentation(S_HUM);
    setType(V_HUM);
    setValueType(TYPE_FLOAT);
  }
}

975
// what to do during before
DV's avatar
DV committed
976
977
978
979
980
void SensorDHT::onBefore() {
    // initialize the dht library
    _dht->begin();
}

981
// what to do during setup
user2684's avatar
user2684 committed
982
983
984
void SensorDHT::onSetup() {
}

985
// what to do during loop
DV's avatar
DV committed
986
987
void SensorDHT::onLoop() {
  // temperature sensor
988
  if (_sensor_type == SensorDHT::TEMPERATURE) {
DV's avatar
DV committed
989
990
991
992
993
    // read the temperature
    float temperature = _dht->readTemperature();
    // convert it
    if (! getControllerConfig().isMetric) temperature = temperature * 1.8 + 32;
    #if DEBUG == 1
994
      Serial.print(F("DHT I="));
DV's avatar
DV committed
995
      Serial.print(_child_id);
996
      Serial.print(F(" T="));
DV's avatar
DV committed
997
998
999
1000
      Serial.println(temperature);
    #endif
    // store the value
    if (! isnan(temperature)) _value_float = temperature;