NodeManager.cpp 84.2 KB
Newer Older
DV's avatar
DV committed
1
2
3
4
5
6
/*
 * NodeManager
 */

#include "NodeManager.h"

7
8
9
10
11
12
/***************************************
   Global functions
*/

// return vcc in V
float getVcc() {
13
14
15
16
17
18
19
20
21
22
23
24
  #ifndef MY_GATEWAY_ESP8266
    // Measure Vcc against 1.1V Vref
    #if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
      ADMUX = (_BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1));
    #elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
      ADMUX = (_BV(MUX5) | _BV(MUX0));
    #elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
      ADMUX = (_BV(MUX3) | _BV(MUX2));
    #else
      ADMUX = (_BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1));
    #endif
    // Vref settle
user2684's avatar
user2684 committed
25
    wait(70);
26
27
28
29
30
    // Do conversion
    ADCSRA |= _BV(ADSC);
    while (bit_is_set(ADCSRA, ADSC)) {};
    // return Vcc in mV
    return (float)((1125300UL) / ADC) / 1000;
31
  #else
32
    return (float)0;
33
34
  #endif
}
DV's avatar
DV committed
35

36

DV's avatar
DV committed
37
38
39
40
41
/***************************************
   PowerManager
*/

// set the vcc and ground pin the sensor is connected to
user2684's avatar
user2684 committed
42
void PowerManager::setPowerPins(int ground_pin, int vcc_pin, int wait_time) {
DV's avatar
DV committed
43
  #if DEBUG == 1
44
    Serial.print(F("PWR G="));
DV's avatar
DV committed
45
    Serial.print(ground_pin);
46
    Serial.print(F(" V="));
DV's avatar
DV committed
47
    Serial.println(vcc_pin);
DV's avatar
DV committed
48
  #endif
user2684's avatar
user2684 committed
49
  // configure the vcc pin as output and initialize to high (power on)
DV's avatar
DV committed
50
51
  _vcc_pin = vcc_pin;
  pinMode(_vcc_pin, OUTPUT);
user2684's avatar
user2684 committed
52
  digitalWrite(_vcc_pin, HIGH);
DV's avatar
DV committed
53
54
55
56
  // configure the ground pin as output and initialize to low
  _ground_pin = ground_pin;
  pinMode(_ground_pin, OUTPUT);
  digitalWrite(_ground_pin, LOW);
user2684's avatar
user2684 committed
57
  _wait = wait_time;
DV's avatar
DV committed
58
59
60
}

// return true if power pins have been configured
user2684's avatar
user2684 committed
61
bool PowerManager::isConfigured() {
DV's avatar
DV committed
62
63
64
65
66
67
  if (_vcc_pin != -1 && _ground_pin != -1) return true;
  return false;
}

// turn on the sensor by activating its power pins
void PowerManager::powerOn() {
user2684's avatar
user2684 committed
68
  if (! isConfigured()) return;
DV's avatar
DV committed
69
  #if DEBUG == 1
70
    Serial.print(F("ON P="));
DV's avatar
DV committed
71
72
73
74
75
    Serial.println(_vcc_pin);
  #endif
  // power on the sensor by turning high the vcc pin
  digitalWrite(_vcc_pin, HIGH);
  // wait a bit for the device to settle down
76
  if (_wait > 0) wait(_wait);
DV's avatar
DV committed
77
78
79
80
}

// turn off the sensor
void PowerManager::powerOff() {
user2684's avatar
user2684 committed
81
  if (! isConfigured()) return;
DV's avatar
DV committed
82
  #if DEBUG == 1
83
    Serial.print(F("OFF P="));
DV's avatar
DV committed
84
85
86
87
88
89
    Serial.println(_vcc_pin);
  #endif
  // power off the sensor by turning low the vcc pin
  digitalWrite(_vcc_pin, LOW);
}

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/******************************************
    Timer
*/

Timer::Timer(NodeManager* node_manager) {
  _node_manager = node_manager;
}

// start the timer
void Timer::start(long target, int unit) {
  set(target,unit);
  start();
}
void Timer::start() {
  if (_is_configured) _is_running = true;
}

// stop the timer
void Timer::stop() {
  _is_running = false;
}

// setup the timer
void Timer::set(long target, int unit) {
  // reset the timer
  _elapsed = 0;
  _use_millis = false;
  _last_millis = 0;
  _sleep_time = 0;
  // save the settings
  _target = target;
  _unit = unit;
  if (_unit == MINUTES) {
    if (_node_manager->isSleepingNode()) {
      // this is a sleeping node and millis() is not reliable so calculate how long a sleep/wait cycle would last
      int sleep_unit = _node_manager->getSleepUnit();
      _sleep_time = (float)_node_manager->getSleepTime();
      if (sleep_unit == SECONDS) _sleep_time = _sleep_time/60;
      else if (sleep_unit == HOURS) _sleep_time = _sleep_time*60;
      else if (sleep_unit == DAYS) _sleep_time = _sleep_time*1440;
    }
    else {
      // this is not a sleeping node, use millis() to keep track of the elapsed time
      _use_millis = true;
    }
  }
  _is_configured = true;
}

// update the timer at every cycle
void Timer::update() {
  if (! isRunning()) return;
  if (_unit == CYCLES) {
    // if not a sleeping node, counting the cycles do not make sense
    if (! _node_manager->isSleepingNode()) return;
    // just increase the cycle counter
    _elapsed++;
  }
  else if (_unit == MINUTES) {
    // if using millis(), calculate the elapsed minutes, otherwise add a sleep interval
    if (_use_millis) {
      _elapsed = (float)(millis() - _last_millis)/1000/60;
    }
    else {
      _elapsed += _sleep_time;
    }
  }
}

// return true if the time is over
bool Timer::isOver() {
  if (! isRunning()) return false;
  // time has elapsed
  if (_elapsed >= _target) return true;
  // millis has started over
  if (_elapsed < 0 ) return true;
  return false;
}

// return true if the timer is running
bool Timer::isRunning() {
  return _is_running;
}

// return true if the time is configured
bool Timer::isConfigured() {
  return _is_configured;
}

// restart the timer
void Timer::restart() {
  if (! isRunning()) return;
  // reset elapsed
  _elapsed = 0;
  // if using millis, keep track of the now timestamp
  if (_use_millis) _last_millis = millis();
}

// return elapsed minutes so far
float Timer::getElapsed() {
  return _elapsed;
}

// return the configured unit
int Timer::getUnit() {
  return _unit;
}
197

DV's avatar
DV committed
198
199
200
201
202
203
204
205
/******************************************
    Sensors
*/

/*
   Sensor class
*/
// constructor
206
207
Sensor::Sensor(NodeManager* node_manager, int child_id, int pin) {
  _node_manager = node_manager;
DV's avatar
DV committed
208
209
210
  _child_id = child_id;
  _pin = pin;
  _msg = MyMessage(_child_id, _type);
211
212
  _report_timer = new Timer(_node_manager);
  _force_update_timer = new Timer(_node_manager);
DV's avatar
DV committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
}

// setter/getter
void Sensor::setPin(int value) {
  _pin = value;
}
int Sensor::getPin() {
  return _pin;
}
void Sensor::setChildId(int value) {
  _child_id = value;
}
int Sensor::getChildId() {
  return _child_id;
}
void Sensor::setPresentation(int value) {
  _presentation = value;
}
int Sensor::getPresentation() {
  return _presentation;
}
void Sensor::setType(int value) {
  _type = value;
  _msg.setType(_type);
}
int Sensor::getType() {
  return _type;
}
user2684's avatar
user2684 committed
241
242
243
void Sensor::setDescription(char* value) {
  _description = value;
}
user2684's avatar
user2684 committed
244
245
246
void Sensor::setAck(bool value) {
  _ack = value;
}
DV's avatar
DV committed
247
248
249
250
251
252
253
254
255
void Sensor::setRetries(int value) {
  _retries = value;
}
void Sensor::setSamples(int value) {
  _samples = value;
}
void Sensor::setSamplesInterval(int value) {
  _samples_interval = value;
}
256
void Sensor::setTrackLastValue(bool value) {
DV's avatar
DV committed
257
258
259
  _track_last_value = value;
}
void Sensor::setForceUpdate(int value) {
260
261
262
263
264
265
266
  setForceUpdateCycles(value);
}
void Sensor::setForceUpdateCycles(int value) {
  _force_update_timer->start(value,CYCLES);
}
void Sensor::setForceUpdateMinutes(int value) {
  _force_update_timer->start(value,MINUTES);
DV's avatar
DV committed
267
268
269
270
}
void Sensor::setValueType(int value) {
  _value_type = value;
}
271
272
273
int Sensor::getValueType() {
  return _value_type;
}
DV's avatar
DV committed
274
275
276
277
void Sensor::setFloatPrecision(int value) {
  _float_precision = value;
}
#if POWER_MANAGER == 1
user2684's avatar
user2684 committed
278
279
    void Sensor::setPowerPins(int ground_pin, int vcc_pin, int wait_time) {
      _powerManager.setPowerPins(ground_pin, vcc_pin, wait_time);
DV's avatar
DV committed
280
    }
DV's avatar
DV committed
281
282
283
    void Sensor::setAutoPowerPins(bool value) {
      _auto_power_pins = value;
    }
DV's avatar
DV committed
284
285
286
287
288
289
290
    void Sensor::powerOn() {
      _powerManager.powerOn();
    }
    void Sensor::powerOff() {
      _powerManager.powerOff();
    }
#endif
DV's avatar
DV committed
291
292
293
void Sensor::setSleepBetweenSend(int value) {
  _sleep_between_send = value;
}
294
295
296
297
298
299
void Sensor::setInterruptPin(int value) {
  _interrupt_pin = value;
}
int Sensor::getInterruptPin() {
  return _interrupt_pin;
}
300
301
302
303
304
305
306
307
308
int Sensor::getValueInt() {
  return _last_value_int;
}
float Sensor::getValueFloat() {
  return _last_value_float;
}
char* Sensor::getValueString() {
  return _last_value_string;
}
DV's avatar
DV committed
309

310
311
312
313
314
315
316
317
318
319
// After how many cycles the sensor will report back its measure (default: 1 cycle)
void Sensor::setReportIntervalCycles(int value) {
  _report_timer->start(value,CYCLES);
}

// After how many minutes the sensor will report back its measure (default: 1 cycle)
void Sensor::setReportIntervalMinutes(int value) {
  _report_timer->start(value,MINUTES);
}

DV's avatar
DV committed
320
321
322
// present the sensor to the gateway and controller
void Sensor::presentation() {
  #if DEBUG == 1
323
    Serial.print(F("PRES I="));
DV's avatar
DV committed
324
    Serial.print(_child_id);
325
    Serial.print(F(" T="));
DV's avatar
DV committed
326
327
    Serial.println(_presentation);
  #endif
user2684's avatar
user2684 committed
328
  present(_child_id, _presentation,_description,_ack);
DV's avatar
DV committed
329
330
331
332
333
334
335
336
}

// call the sensor-specific implementation of before
void Sensor::before() {
  if (_pin == -1) return;
  onBefore();
}

user2684's avatar
user2684 committed
337
338
339
340
341
342
// call the sensor-specific implementation of setup
void Sensor::setup() {
  if (_pin == -1) return;
  onSetup();
}

DV's avatar
DV committed
343
344
345
// call the sensor-specific implementation of loop
void Sensor::loop(const MyMessage & message) {
  if (_pin == -1) return;
346
347
348
349
350
351
352
353
354
355
  // update the timers if within a loop cycle
  if (! _isReceive(message)) {
    if (_report_timer->isRunning()) {
      // update the timer
      _report_timer->update();
      // if it is not the time yet to report a new measure, just return
      if (! _report_timer->isOver()) return;
    }
    if (_force_update_timer->isRunning()) _force_update_timer->update();
  }
DV's avatar
DV committed
356
357
  #if POWER_MANAGER == 1
    // turn the sensor on
DV's avatar
DV committed
358
    if (_auto_power_pins) powerOn();
DV's avatar
DV committed
359
360
361
362
363
364
365
  #endif
  // for numeric sensor requiring multiple samples, keep track of the total
  float total = 0;
  // keep track of the number of cycles since the last update
  // collect multiple samples if needed
  for (int i = 0; i < _samples; i++) {
    // call the sensor-specific implementation of the main task which will store the result in the _value variable
366
    if (_isReceive(message)) {
DV's avatar
DV committed
367
368
369
      // we've been called from receive(), pass the message along
      onReceive(message);
    }
370
371
372
373
    else {
      // we'be been called from loop()
      onLoop();
    }
DV's avatar
DV committed
374
375
376
377
    // for integers and floats, keep track of the total
    if (_value_type == TYPE_INTEGER) total += (float)_value_int;
    else if (_value_type == TYPE_FLOAT) total += _value_float;
    // wait between samples
378
    if (_samples_interval > 0) wait(_samples_interval);
DV's avatar
DV committed
379
  }
380
  // process the result and send a response back
DV's avatar
DV committed
381
382
383
384
  if (_value_type == TYPE_INTEGER && total > -1) {
    // if the value is an integer, calculate the average value of the samples
    int avg = (int) (total / _samples);
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
385
    if (_isReceive(message) || _isWorthSending(avg != _last_value_int))  {
DV's avatar
DV committed
386
387
388
389
390
391
392
393
      _last_value_int = avg;
      _send(_msg.set(avg));
    }
  }
  // process a float value
  else if (_value_type == TYPE_FLOAT && total > -1) {
    // calculate the average value of the samples
    float avg = total / _samples;
394
395
    // report the value back
    if (_isReceive(message) || _isWorthSending(avg != _last_value_float))  {
DV's avatar
DV committed
396
397
398
399
400
401
402
      _last_value_float = avg;
      _send(_msg.set(avg, _float_precision));
    }
  }
  // process a string value
  else if (_value_type == TYPE_STRING) {
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
403
    if (_isReceive(message) || _isWorthSending(strcmp(_value_string, _last_value_string) != 0))  {
DV's avatar
DV committed
404
405
406
407
408
409
      _last_value_string = _value_string;
      _send(_msg.set(_value_string));
    }
  }
  // turn the sensor off
  #if POWER_MANAGER == 1
DV's avatar
DV committed
410
    if (_auto_power_pins) powerOff();
DV's avatar
DV committed
411
  #endif
412
413
  // restart the report timer if over
  if (! _isReceive(message) && _report_timer->isRunning() && _report_timer->isOver()) _report_timer->restart();
DV's avatar
DV committed
414
415
416
417
418
419
}

// receive a message from the radio network
void Sensor::receive(const MyMessage &message) {
  // return if not for this sensor
  if (message.sensor != _child_id || message.type != _type) return;
420
  // a request would make the sensor executing its main task passing along the message
DV's avatar
DV committed
421
422
423
424
425
426
427
  loop(message);
}

// send a message to the network
void Sensor::_send(MyMessage & message) {
  // send the message, multiple times if requested
  for (int i = 0; i < _retries; i++) {
DV's avatar
DV committed
428
    // if configured, sleep beetween each send
429
    if (_sleep_between_send > 0) sleep(_sleep_between_send);
DV's avatar
DV committed
430
    #if DEBUG == 1
431
      Serial.print(F("SEND D="));
DV's avatar
DV committed
432
      Serial.print(message.destination);
433
      Serial.print(F(" I="));
DV's avatar
DV committed
434
      Serial.print(message.sensor);
435
      Serial.print(F(" C="));
DV's avatar
DV committed
436
      Serial.print(message.getCommand());
437
      Serial.print(F(" T="));
DV's avatar
DV committed
438
      Serial.print(message.type);
439
      Serial.print(F(" S="));
DV's avatar
DV committed
440
      Serial.print(message.getString());
441
      Serial.print(F(" I="));
DV's avatar
DV committed
442
      Serial.print(message.getInt());
443
      Serial.print(F(" F="));
DV's avatar
DV committed
444
445
      Serial.println(message.getFloat());
    #endif
user2684's avatar
user2684 committed
446
    send(message,_ack);
DV's avatar
DV committed
447
448
449
  }
}

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
// return true if the message is coming from the radio network
bool Sensor::_isReceive(const MyMessage & message) {
  if (message.sender == 0 && message.sensor == 0 && message.getCommand() == 0 && message.type == 0) return false;
  return true;
}

// determine if a value is worth sending back to the controller
bool Sensor::_isWorthSending(bool comparison) {
  // track last value is disabled
  if (! _track_last_value) return true;
  // track value is enabled and the current value is different then the old value
  if (_track_last_value && comparison) return true;
  // track value is enabled and the timer is over
  if (_track_last_value && _force_update_timer->isRunning() && _force_update_timer->isOver()) {
    // restart the timer
    _force_update_timer->restart();
    return true;
  }
  return false;
}


DV's avatar
DV committed
472
473
474
475
476
/*
   SensorAnalogInput
*/

// contructor
477
SensorAnalogInput::SensorAnalogInput(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager, child_id, pin) {
DV's avatar
DV committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
}

// setter/getter
void SensorAnalogInput::setReference(int value) {
  _reference = value;
}
void SensorAnalogInput::setReverse(bool value) {
  _reverse = value;
}
void SensorAnalogInput::setOutputPercentage(bool value) {
  _output_percentage = value;
}
void SensorAnalogInput::setRangeMin(int value) {
  _range_min = value;
}
void SensorAnalogInput::setRangeMax(int value) {
  _range_max = value;
}

497
// what to do during before
DV's avatar
DV committed
498
499
500
501
502
void SensorAnalogInput::onBefore() {
  // prepare the pin for input
  pinMode(_pin, INPUT);
}

503
// what to do during setup
user2684's avatar
user2684 committed
504
505
506
void SensorAnalogInput::onSetup() {
}

507
// what to do during loop
DV's avatar
DV committed
508
509
510
511
512
513
514
void SensorAnalogInput::onLoop() {
  // read the input
  int adc = _getAnalogRead();
  // calculate the percentage
  int percentage = 0;
  if (_output_percentage) percentage = _getPercentage(adc);
  #if DEBUG == 1
515
    Serial.print(F("A-IN I="));
DV's avatar
DV committed
516
    Serial.print(_child_id);
517
    Serial.print(F(" V="));
DV's avatar
DV committed
518
    Serial.print(adc);
519
    Serial.print(F(" %="));
DV's avatar
DV committed
520
521
522
523
524
525
    Serial.println(percentage);
  #endif
  // store the result
  _value_int = _output_percentage ? percentage : adc;
}

526
// what to do during loop
DV's avatar
DV committed
527
void SensorAnalogInput::onReceive(const MyMessage & message) {
528
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
529
530
531
532
}

// read the analog input
int SensorAnalogInput::_getAnalogRead() {
533
534
535
536
537
538
539
  #ifndef MY_GATEWAY_ESP8266
    // set the reference
    if (_reference != -1) {
      analogReference(_reference);
      wait(100);
    }
  #endif
DV's avatar
DV committed
540
541
542
543
544
545
546
547
548
  // read and return the value
  int value = analogRead(_pin);
  if (_reverse) value = _range_max - value;
  return value;
}

// return a percentage from an analog value
int SensorAnalogInput::_getPercentage(int adc) {
  float value = (float)adc;
DV's avatar
DV committed
549
550
  // restore the original value
  if (_reverse) value = 1024 - value;
DV's avatar
DV committed
551
552
  // scale the percentage based on the range provided
  float percentage = ((value - _range_min) / (_range_max - _range_min)) * 100;
DV's avatar
DV committed
553
  if (_reverse) percentage = 100 - percentage;
DV's avatar
DV committed
554
555
556
557
558
559
560
561
562
563
  if (percentage > 100) percentage = 100;
  if (percentage < 0) percentage = 0;
  return (int)percentage;
}

/*
   SensorLDR
*/

// contructor
564
SensorLDR::SensorLDR(NodeManager* node_manager, int child_id, int pin): SensorAnalogInput(node_manager, child_id, pin) {
DV's avatar
DV committed
565
566
567
568
569
570
571
572
573
574
575
  // set presentation and type and reverse (0: no light, 100: max light)
  setPresentation(S_LIGHT_LEVEL);
  setType(V_LIGHT_LEVEL);
  setReverse(true);
}

/*
   SensorThermistor
*/

// contructor
576
SensorThermistor::SensorThermistor(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager, child_id, pin) {
DV's avatar
DV committed
577
578
579
580
581
582
583
  // set presentation, type and value type
  setPresentation(S_TEMP);
  setType(V_TEMP);
  setValueType(TYPE_FLOAT);
}

// setter/getter
584
void SensorThermistor::setNominalResistor(long value) {
DV's avatar
DV committed
585
586
587
588
589
590
591
592
  _nominal_resistor = value;
}
void SensorThermistor::setNominalTemperature(int value) {
  _nominal_temperature = value;
}
void SensorThermistor::setBCoefficient(int value) {
  _b_coefficient = value;
}
593
void SensorThermistor::setSeriesResistor(long value) {
DV's avatar
DV committed
594
595
596
597
598
599
  _series_resistor = value;
}
void SensorThermistor::setOffset(float value) {
  _offset = value;
}

600
// what to do during before
DV's avatar
DV committed
601
602
603
604
605
void SensorThermistor::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

606
// what to do during setup
user2684's avatar
user2684 committed
607
608
609
void SensorThermistor::onSetup() {
}

610
// what to do during loop
DV's avatar
DV committed
611
612
613
614
615
616
617
618
619
620
621
622
623
void SensorThermistor::onLoop() {
  // read the voltage across the thermistor
  float adc = analogRead(_pin);
  // calculate the temperature
  float reading = (1023 / adc)  - 1;
  reading = _series_resistor / reading;
  float temperature;
  temperature = reading / _nominal_resistor;     // (R/Ro)
  temperature = log(temperature);                  // ln(R/Ro)
  temperature /= _b_coefficient;                   // 1/B * ln(R/Ro)
  temperature += 1.0 / (_nominal_temperature + 273.15); // + (1/To)
  temperature = 1.0 / temperature;                 // Invert
  temperature -= 273.15;                         // convert to C
624
  temperature = _node_manager->celsiusToFahrenheit(temperature);
DV's avatar
DV committed
625
  #if DEBUG == 1
626
    Serial.print(F("THER I="));
DV's avatar
DV committed
627
    Serial.print(_child_id);
628
    Serial.print(F(" V="));
DV's avatar
DV committed
629
    Serial.print(adc);
630
    Serial.print(F(" T="));
631
    Serial.print(temperature);
DV's avatar
DV committed
632
633
634
635
636
  #endif
  // store the value
  _value_float = temperature;
}

637
// what to do as the main task when receiving a message
DV's avatar
DV committed
638
void SensorThermistor::onReceive(const MyMessage & message) {
639
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
640
641
}

642
643
644
645
646
647

/*
   SensorML8511
*/

// contructor
648
SensorML8511::SensorML8511(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager, child_id, pin) {
649
650
651
652
653
654
  // set presentation, type and value type
  setPresentation(S_UV);
  setType(V_UV);
  setValueType(TYPE_FLOAT);
}

655
// what to do during before
656
657
658
659
660
void SensorML8511::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

661
// what to do during setup
662
663
664
void SensorML8511::onSetup() {
}

665
// what to do during loop
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
void SensorML8511::onLoop() {
  // read the voltage 
  int uvLevel = analogRead(_pin);
  int refLevel = getVcc()*1024/3.3;
  //Use the 3.3V power pin as a reference to get a very accurate output value from sensor
  float outputVoltage = 3.3 / refLevel * uvLevel;
  //Convert the voltage to a UV intensity level
  float uvIntensity = _mapfloat(outputVoltage, 0.99, 2.8, 0.0, 15.0); 
  #if DEBUG == 1
    Serial.print(F("UV I="));
    Serial.print(_child_id);
    Serial.print(F(" V="));
    Serial.print(outputVoltage);
    Serial.print(F(" I="));
    Serial.println(uvIntensity);
  #endif
  // store the value
  _value_float = uvIntensity;
}

686
// what to do as the main task when receiving a message
687
void SensorML8511::onReceive(const MyMessage & message) {
688
  if (message.getCommand() == C_REQ) onLoop();
689
690
691
692
693
694
695
}

// The Arduino Map function but for floats
float SensorML8511::_mapfloat(float x, float in_min, float in_max, float out_min, float out_max) {
  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}

696
697
698
699
700
/*
   SensorACS712
*/

// contructor
701
SensorACS712::SensorACS712(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager, child_id, pin) {
702
703
704
705
706
707
708
709
710
711
712
713
714
715
  // set presentation, type and value type
  setPresentation(S_MULTIMETER);
  setType(V_CURRENT);
  setValueType(TYPE_FLOAT);
}

// setter/getter
void SensorACS712::setmVPerAmp(int value) {
  _mv_per_amp = value;
}
void SensorACS712::setOffset(int value) {
  _ACS_offset = value;
}

716
// what to do during before
717
718
719
720
721
void SensorACS712::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

722
// what to do during setup
723
724
725
void SensorACS712::onSetup() {
}

726
// what to do during loop
727
728
729
730
731
732
733
734
735
736
737
738
739
740
void SensorACS712::onLoop() {
  int value = analogRead(_pin);
  // convert the analog read in mV
  double voltage = (value / 1024.0) * 5000; 
  // convert voltage in amps
  _value_float = ((voltage - _ACS_offset) / _mv_per_amp);
  #if DEBUG == 1
    Serial.print(F("ACS I="));
    Serial.print(_child_id);
    Serial.print(F(" A="));
    Serial.println(_value_float);
  #endif
}

741
// what to do as the main task when receiving a message
742
743
744
745
void SensorACS712::onReceive(const MyMessage & message) {
  if (message.getCommand() == C_REQ) onLoop();
}

746
747
748
749
750
/*
   SensorRainGauge
*/

// contructor
751
SensorRainGauge::SensorRainGauge(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager,child_id, pin) {
752
753
754
755
  // set presentation, type and value type
  setPresentation(S_RAIN);
  setType(V_RAIN);
  setValueType(TYPE_FLOAT);
756
757
  // create the timer
  _timer = new Timer(node_manager);
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
}

// initialize static variables
long SensorRainGauge::_last_tip = 0;
long SensorRainGauge::_count = 0;

// setter/getter
void SensorRainGauge::setReportInterval(int value) {
  _report_interval = value;
}
void SensorRainGauge::setSingleTip(float value) {
  _single_tip = value;
}

// what to do during before
void SensorRainGauge::onBefore() {
  // set the pin as input and enabled pull up
  pinMode(_pin, INPUT_PULLUP);
  // attach to the pin's interrupt and execute the routine on falling
  attachInterrupt(digitalPinToInterrupt(_pin), _onTipped, FALLING);
778
779
  // start the timer
  _timer->start(_report_interval,MINUTES);
780
781
782
783
784
785
786
787
}

// what to do during setup
void SensorRainGauge::onSetup() {
}

// what to do when when receiving an interrupt
void SensorRainGauge::_onTipped() {
788
  long now = millis();
789
  // on tipping, two consecutive interrupts are received, ignore the second one
790
  if ( (now - _last_tip > 100) || (now < _last_tip) ){
791
792
793
794
795
796
    // increase the counter
    _count++;
    #if DEBUG == 1
      Serial.println(F("RAIN+"));
    #endif
  }
797
  _last_tip = now;
798
799
800
801
802
803
}

// what to do during loop
void SensorRainGauge::onLoop() {
  // avoid reporting the same value multiple times
  _value_float = -1;
804
805
806
  _timer->update();
  // time to report 
  if (_timer->isOver()) {
807
    // report the total amount of rain for the last period
808
    _value_float = _count * _single_tip;
809
810
811
812
813
814
    #if DEBUG == 1
      Serial.print(F("RAIN I="));
      Serial.print(_child_id);
      Serial.print(F(" T="));
      Serial.println(_value_float);
    #endif
815
816
    // reset the timer
    _timer->restart();
817
818
819
820
821
822
823
  }
}

// what to do as the main task when receiving a message
void SensorRainGauge::onReceive(const MyMessage & message) {
  if (message.getCommand() == C_REQ) {
    // report the total amount of rain for the last period
824
    _value_float = _count * _single_tip;    
825
826
827
  }
}

828
829
830
831
832
/*
   SensorRain
*/

// contructor
833
SensorRain::SensorRain(NodeManager* node_manager, int child_id, int pin): SensorAnalogInput(node_manager,child_id, pin) {
834
835
836
837
838
839
840
841
842
843
844
845
846
847
  // set presentation and type and reverse
  setPresentation(S_RAIN);
  setType(V_RAINRATE);
  setReference(DEFAULT);
  setOutputPercentage(true);
  setReverse(true);
  setRangeMin(100);
}

/*
   SensorSoilMoisture
*/

// contructor
848
SensorSoilMoisture::SensorSoilMoisture(NodeManager* node_manager, int child_id, int pin): SensorAnalogInput(node_manager, child_id, pin) {
849
850
851
852
853
854
855
856
857
  // set presentation and type and reverse
  setPresentation(S_MOISTURE);
  setType(V_LEVEL);
  setReference(DEFAULT);
  setOutputPercentage(true);
  setReverse(true);
  setRangeMin(100);
}

858

859
860
861
/*
 * SensorMQ
 */
862
SensorMQ::SensorMQ(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager,child_id,pin) {
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
  setPresentation(S_AIR_QUALITY);
  setType(V_LEVEL);
}

//setter/getter
void SensorMQ::setRlValue(float value) {
  _rl_value = value;
}
void SensorMQ::setRoValue(float value) {
  _ro = value;
}
void SensorMQ::setCleanAirFactor(float value) {
  _ro_clean_air_factor = value;
}
void SensorMQ::setCalibrationSampleTimes(int value) {
  _calibration_sample_times = value;
}
void SensorMQ::setCalibrationSampleInterval(int value){
  _calibration_sample_interval = value;
}
void SensorMQ::setReadSampleTimes(int value) {
  _read_sample_times = value;
}
void SensorMQ::setReadSampleInterval(int value) {
  _read_sample_interval = value;
}
void SensorMQ::setLPGCurve(float *value) {
  _LPGCurve[0] = value[0];
  _LPGCurve[2] = value[1];
  _LPGCurve[2] = value[2];
}
void SensorMQ::setCOCurve(float *value) {
  _COCurve[0] = value[0];
  _COCurve[2] = value[1];
  _COCurve[2] = value[2];
}
void SensorMQ::setSmokeCurve(float *value) {
  _SmokeCurve[0] = value[0];
  _SmokeCurve[2] = value[1];
  _SmokeCurve[2] = value[2];
}

905
// what to do during before
906
907
908
909
910
void SensorMQ::onBefore() {
  // prepare the pin for input
  pinMode(_pin, INPUT);
}

911
// what to do during setup
912
913
914
915
void SensorMQ::onSetup() {
  _ro = _MQCalibration();
}

916
// what to do during loop
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
void SensorMQ::onLoop() {
  if (_pin == -1) return;
  // calculate rs/ro
  float mq = _MQRead()/_ro;
  // calculate the ppm
  float lpg = _MQGetGasPercentage(mq,_gas_lpg);
  float co = _MQGetGasPercentage(mq,_gas_co);
  float smoke = _MQGetGasPercentage(mq,_gas_smoke);
  // assign to the value the requested gas
  uint16_t value;
  if (_target_gas == _gas_lpg) value = lpg;
  if (_target_gas == _gas_co) value = co;
  if (_target_gas == _gas_smoke) value = smoke;
  #if DEBUG == 1
    Serial.print(F("MQ I="));
    Serial.print(_child_id);
    Serial.print(F(" V="));
    Serial.print(value);
    Serial.print(F(" LPG="));
    Serial.print(lpg);
    Serial.print(F(" CO="));
    Serial.print(co);
    Serial.print(F(" SMOKE="));
    Serial.println(smoke);
  #endif
  // store the value
  _value_int = (int16_t)ceil(value);
}

946
// what to do as the main task when receiving a message
947
void SensorMQ::onReceive(const MyMessage & message) {
948
  if (message.getCommand() == C_REQ) onLoop();
949
950
951
952
953
954
955
956
957
958
959
960
961
962
}

// returns the calculated sensor resistance
float SensorMQ::_MQResistanceCalculation(int raw_adc) {
  return ( ((float)_rl_value*(1023-raw_adc)/raw_adc));
}

//  This function assumes that the sensor is in clean air
float SensorMQ::_MQCalibration() {
  int i;
  float val=0;
  //take multiple samples
  for (i=0; i< _calibration_sample_times; i++) {  
    val += _MQResistanceCalculation(analogRead(_pin));
user2684's avatar
user2684 committed
963
    wait(_calibration_sample_interval);
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
  }
  //calculate the average value
  val = val/_calibration_sample_times;                   
  //divided by RO_CLEAN_AIR_FACTOR yields the Ro
  val = val/_ro_clean_air_factor;
  //according to the chart in the datasheet
  return val;
}

// This function use MQResistanceCalculation to caculate the sensor resistenc (Rs).
float SensorMQ::_MQRead() {
  int i;
  float rs=0;
  for (i=0; i<_read_sample_times; i++) {
    rs += _MQResistanceCalculation(analogRead(_pin));
user2684's avatar
user2684 committed
979
    wait(_read_sample_interval);
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
  }
  rs = rs/_read_sample_times;
  return rs;
}

// This function passes different curves to the MQGetPercentage function which calculates the ppm (parts per million) of the target gas.
int SensorMQ::_MQGetGasPercentage(float rs_ro_ratio, int gas_id) {
  if ( gas_id == _gas_lpg ) {
    return _MQGetPercentage(rs_ro_ratio,_LPGCurve);
  } else if ( gas_id == _gas_co) {
    return _MQGetPercentage(rs_ro_ratio,_COCurve);
  } else if ( gas_id == _gas_smoke) {
    return _MQGetPercentage(rs_ro_ratio,_SmokeCurve);
  }
  return 0;
}

// returns ppm of the target gas
int SensorMQ::_MQGetPercentage(float rs_ro_ratio, float *pcurve) {
  return (pow(10,( ((log10(rs_ro_ratio)-pcurve[1])/pcurve[2]) + pcurve[0])));
}


DV's avatar
DV committed
1003
1004
1005
1006
1007
/*
   SensorDigitalInput
*/

// contructor
1008
SensorDigitalInput::SensorDigitalInput(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager,child_id, pin) {
DV's avatar
DV committed
1009
1010
}

1011
// what to do during before
DV's avatar
DV committed
1012
1013
1014
1015
1016
void SensorDigitalInput::onBefore() {
  // set the pin for input
  pinMode(_pin, INPUT);
}

1017
// what to do during setup
user2684's avatar
user2684 committed
1018
1019
1020
void SensorDigitalInput::onSetup() {
}

1021
// what to do during loop
DV's avatar
DV committed
1022
1023
1024
1025
void SensorDigitalInput::onLoop() {
  // read the value
  int value = digitalRead(_pin);
  #if DEBUG == 1
1026
    Serial.print(F("D-IN I="));
DV's avatar
DV committed
1027
    Serial.print(_child_id);
1028
    Serial.print(F(" P="));
DV's avatar
DV committed
1029
    Serial.print(_pin);
1030
    Serial.print(F(" V="));
DV's avatar
DV committed
1031
1032
1033
1034
1035
1036
    Serial.println(value);
  #endif
  // store the value
  _value_int = value;
}

1037
// what to do as the main task when receiving a message
DV's avatar
DV committed
1038
void SensorDigitalInput::onReceive(const MyMessage & message) {
1039
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
1040
1041
1042
1043
1044
1045
1046
1047
}


/*
   SensorDigitalOutput
*/

// contructor
1048
SensorDigitalOutput::SensorDigitalOutput(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager,child_id, pin) {
1049
  _safeguard_timer = new Timer(node_manager);
DV's avatar
DV committed
1050
1051
}

1052
// what to do during before
DV's avatar
DV committed
1053
1054
1055
void SensorDigitalOutput::onBefore() {
  // set the pin as output and initialize it accordingly
  pinMode(_pin, OUTPUT);
1056
1057
  _state = _initial_value == LOW ? LOW : HIGH;
  digitalWrite(_pin, _state);
DV's avatar
DV committed
1058
1059
  // the initial value is now the current value
  _value_int = _initial_value;
1060
  // create the safeguard timer
DV's avatar
DV committed
1061
1062
}

1063
// what to do during setup
user2684's avatar
user2684 committed
1064
1065
1066
void SensorDigitalOutput::onSetup() {
}

DV's avatar
DV committed
1067
1068
1069
1070
1071
1072
1073
// setter/getter
void SensorDigitalOutput::setInitialValue(int value) {
  _initial_value = value;
}
void SensorDigitalOutput::setPulseWidth(int value) {
  _pulse_width = value;
}
1074
1075
1076
void SensorDigitalOutput::setOnValue(int value) {
  _on_value = value;
}
1077
1078
1079
void SensorDigitalOutput::setLegacyMode(bool value) {
  _legacy_mode = value;
}
1080
1081
1082
1083
1084
1085
1086
1087
1088
void SensorDigitalOutput::setSafeguard(int value) {
  _safeguard_timer->set(value,MINUTES);
}
int SensorDigitalOutput::getState() {
  return _state;
}
void SensorDigitalOutput::setInputIsElapsed(bool value) {
  _input_is_elapsed = value;
}
DV's avatar
DV committed
1089
1090
1091

// main task
void SensorDigitalOutput::onLoop() {
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
    // set the value to -1 so to avoid reporting to the gateway during loop
    _value_int = -1;
    _last_value_int = -1;
  // if a safeguard is set, check if it is time for it
  if (_safeguard_timer->isRunning()) {
    // update the timer
    _safeguard_timer->update();
    // if the time is over, turn the output off
    if (_safeguard_timer->isOver()) set(LOW);
  }
DV's avatar
DV committed
1102
1103
}

1104
// what to do as the main task when receiving a message
DV's avatar
DV committed
1105
void SensorDigitalOutput::onReceive(const MyMessage & message) {
1106
1107
  // by default handle a SET message but when legacy mode is set when a REQ message is expected instead
  if ( (message.getCommand() == C_SET && ! _legacy_mode) || (message.getCommand() == C_REQ && _legacy_mode)) {
1108
1109
    // switch the output
    set(message.getInt());
1110
  }
1111
  if (message.getCommand() == C_REQ && ! _legacy_mode) {
1112
1113
1114
    // return the current status
    _value_int = _state;
  }
DV's avatar
DV committed
1115
1116
}

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
// write the value to the output
void SensorDigitalOutput::set(int value) {
  if (_input_is_elapsed) {
    if (value == LOW) {
      // stop the timer
      _safeguard_timer->stop();
    } else {
      // configure and start the timer
      _safeguard_timer->start(value,MINUTES);
      // if the input is an elapsed time, unless the value is LOW, the output will be always on
      value = HIGH;
    }
  } else {
    // if turning the output on and a safeguard timer is configured, start it
    if (value == HIGH && _safeguard_timer->isConfigured() && ! _safeguard_timer->isRunning()) _safeguard_timer->start();
  }
  #if DEBUG == 1
    Serial.print(F("DOUT I="));
    Serial.print(_child_id);
    Serial.print(F(" P="));
    Serial.print(_pin);
    Serial.print(F(" V="));
    Serial.print(value);
    Serial.print(F(" P="));
    Serial.println(_pulse_width);
  #endif
  // reverse the value if needed
  int value_to_write = value;
  if (_on_value == LOW) {
    if (value == HIGH) value_to_write = LOW;
    if (value == LOW) value_to_write = HIGH;
  }
  // set the value
  digitalWrite(_pin, value_to_write);
  if (_pulse_width > 0) {
    // if this is a pulse output, restore the value to the original value after the pulse
    wait(_pulse_width);
    digitalWrite(_pin, value_to_write == 0 ? HIGH: LOW);
  }
  // store the current value so it will be sent to the controller
  _state = value;
  _value_int = value;
}


DV's avatar
DV committed
1162
1163
1164
1165
1166
/*
   SensorRelay
*/

// contructor
1167
SensorRelay::SensorRelay(NodeManager* node_manager, int child_id, int pin): SensorDigitalOutput(node_manager, child_id, pin) {
DV's avatar
DV committed
1168
1169
1170
1171
  // set presentation and type
  setPresentation(S_BINARY);
  setType(V_STATUS);
}
1172
/*
DV's avatar
DV committed
1173
1174
1175
1176
// define what to do during loop
void SensorRelay::onLoop() {
    // set the value to -1 so to avoid reporting to the gateway during loop
    _value_int = -1;
1177
    _last_value_int = -1;
DV's avatar
DV committed
1178
}
1179
*/
DV's avatar
DV committed
1180
1181
1182
1183
1184
/*
   SensorLatchingRelay
*/

// contructor
1185
SensorLatchingRelay::SensorLatchingRelay(NodeManager* node_manager, int child_id, int pin): SensorRelay(node_manager, child_id, pin) {
DV's avatar
DV committed
1186
1187
1188
1189
1190
1191
1192
1193
1194
  // like a sensor with a default pulse set
  setPulseWidth(50);
}

/*
   SensorDHT
*/
#if MODULE_DHT == 1
// contructor
1195
SensorDHT::SensorDHT(NodeManager* node_manager, int child_id, int pin, DHT* dht, int sensor_type, int dht_type): Sensor(node_manager, child_id, pin) {
DV's avatar
DV committed
1196
1197
1198
1199
  // store the dht object
  _dht = dht;
  _sensor_type = sensor_type;
  _dht_type = dht_type;
1200
  if (_sensor_type == SensorDHT::TEMPERATURE) {
DV's avatar
DV committed
1201
1202
1203
1204
1205
    // temperature sensor
    setPresentation(S_TEMP);
    setType(V_TEMP);
    setValueType(TYPE_FLOAT);
  }
1206
  else if (_sensor_type == SensorDHT::HUMIDITY) {
DV's avatar
DV committed
1207
1208
1209
1210
1211
1212
1213
    // humidity sensor
    setPresentation(S_HUM);
    setType(V_HUM);
    setValueType(TYPE_FLOAT);
  }
}

1214
// what to do during before
DV's avatar
DV committed
1215
1216
1217
1218
1219
void SensorDHT::onBefore() {
    // initialize the dht library
    _dht->begin();
}

1220
// what to do during setup
user2684's avatar
user2684 committed
1221
1222
1223
void SensorDHT::onSetup() {
}

1224
// what to do during loop
DV's avatar
DV committed
1225
1226
void SensorDHT::onLoop() {
  // temperature sensor
1227
  if (_sensor_type == SensorDHT::TEMPERATURE) {
DV's avatar
DV committed
1228
1229
1230
    // read the temperature
    float temperature = _dht->readTemperature();
    // convert it
1231
    temperature = _node_manager->celsiusToFahrenheit(temperature);
DV's avatar
DV committed
1232
    #if DEBUG == 1
1233
      Serial.print(F("DHT I="));
DV's avatar
DV committed
1234
      Serial.print(_child_id);
1235
      Serial.print(F(" T="));
DV's avatar
DV committed
1236
1237
1238
1239
1240
1241
      Serial.println(temperature);
    #endif
    // store the value
    if (! isnan(temperature)) _value_float = temperature;
  }
  // humidity sensor
1242
  else if (_sensor_type == SensorDHT::HUMIDITY) {
DV's avatar
DV committed
1243
1244
1245
1246
    // read humidity
    float humidity = _dht->readHumidity();
    if (isnan(humidity)) return;
    #if DEBUG == 1
1247
      Serial.print(F("DHT I="));
DV's avatar
DV committed
1248
      Serial.print(_child_id);
1249
      Serial.print(F(" H="));
DV's avatar
DV committed
1250
1251
1252
1253
1254
1255
1256
      Serial.println(humidity);
    #endif
    // store the value
    if (! isnan(humidity)) _value_float = humidity;
  }
}

1257
// what to do as the main task when receiving a message
DV's avatar
DV committed
1258
void SensorDHT::onReceive(const MyMessage & message) {
1259
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
1260
1261
1262
1263
1264
1265
1266
1267
}
#endif

/*
   SensorSHT21
*/
#if MODULE_SHT21 == 1
// contructor
1268
SensorSHT21::SensorSHT21(NodeManager* node_manager, int child_id, int sensor_type): Sensor(node_manager,child_id,A2) {
DV's avatar
DV committed
1269
1270
  // store the sensor type (0: temperature, 1: humidity)
  _sensor_type = sensor_type;
1271
  if (_sensor_type == SensorSHT21::TEMPERATURE) {
DV's avatar
DV committed
1272
1273
1274
1275
1276
    // temperature sensor
    setPresentation(S_TEMP);
    setType(V_TEMP);
    setValueType(TYPE_FLOAT);
  }
1277
  else if (_sensor_type == SensorSHT21::HUMIDITY) {
DV's avatar
DV committed
1278
1279
1280
1281
1282
1283
1284
    // humidity sensor
    setPresentation(S_HUM);
    setType(V_HUM);
    setValueType(TYPE_FLOAT);
  }
}

1285
// what to do during before
DV's avatar
DV committed
1286
1287
1288
1289
1290
void SensorSHT21::onBefore() {
  // initialize the library
  Wire.begin();
}

1291
// what to do during setup
user2684's avatar
user2684 committed
1292
1293
1294
void SensorSHT21::onSetup() {
}

1295
// what to do during loop
DV's avatar
DV committed
1296
1297
void SensorSHT21::onLoop() {
  // temperature sensor
1298
  if (_sensor_type == SensorSHT21::TEMPERATURE) {
DV's avatar
DV committed
1299
1300
1301
    // read the temperature
    float temperature = SHT2x.GetTemperature();
    // convert it
1302
    temperature = _node_manager->celsiusToFahrenheit(temperature);
DV's avatar
DV committed
1303
    #if DEBUG == 1
1304
      Serial.print(F("SHT I="));
DV's avatar
DV committed
1305
      Serial.print(_child_id);
1306
      Serial.print(F(" T="));
DV's avatar
DV committed
1307
1308
1309
1310
1311
1312
      Serial.println(temperature);
    #endif
    // store the value
    if (! isnan(temperature)) _value_float = temperature;
  }
  // Humidity Sensor
1313
  else if (_sensor_type == SensorSHT21::HUMIDITY) {
DV's avatar
DV committed
1314
1315
1316
1317
    // read humidity
    float humidity = SHT2x.GetHumidity();
    if (isnan(humidity)) return;
    #if DEBUG == 1
1318
      Serial.print(F("SHT I="));
DV's avatar
DV committed
1319
      Serial.print(_child_id);
1320
      Serial.print(F(" H="));
DV's avatar
DV committed
1321
1322
1323
1324
1325
1326
1327
      Serial.println(humidity);
    #endif
    // store the value
    if (! isnan(humidity)) _value_float = humidity;
  }
}

1328
// what to do as the main task when receiving a message
DV's avatar
DV committed
1329
void SensorSHT21::onReceive(const MyMessage & message) {
1330
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
1331
1332
1333
}
#endif

DV's avatar
DV committed
1334
1335
1336
1337
1338
/*
 * SensorHTU21D
 */
 #if MODULE_SHT21 == 1
// constructor
1339
SensorHTU21D::SensorHTU21D(NodeManager* node_manager, int child_id, int pin): SensorSHT21(node_manager, child_id, pin) {
DV's avatar
DV committed
1340
1341
1342
}
#endif 

DV's avatar
DV committed
1343
1344
1345
/*
 * SensorSwitch
 */
1346
SensorSwitch::SensorSwitch(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager,child_id,pin) {
DV's avatar
DV committed
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
  setType(V_TRIPPED);
}

// setter/getter
void SensorSwitch::setMode(int value) {
  _mode = value;
}
int SensorSwitch::getMode() {
  return _mode;
}
void SensorSwitch::setDebounce(int value) {
  _debounce = value;
}
void SensorSwitch::setTriggerTime(int value) {
  _trigger_time = value;
}
1363
1364
1365
1366
1367
1368
void SensorSwitch::setInitial(int value) {
  _initial = value;
}
int SensorSwitch::getInitial() {
  return _initial;
}
DV's avatar
DV committed
1369

1370
// what to do during before
DV's avatar
DV committed
1371
1372
1373
1374
1375
1376
void SensorSwitch::onBefore() {
  // initialize the value
  if (_mode == RISING) _value_int = LOW;
  else if (_mode == FALLING) _value_int = HIGH;
}

1377
// what to do during setup
user2684's avatar
user2684 committed
1378
1379
1380
void SensorSwitch::onSetup() {
}

1381
// what to do during loop
DV's avatar
DV committed
1382
1383
void SensorSwitch::onLoop() {
  // wait to ensure the the input is not floating
1384
  if (_debounce > 0) wait(_debounce);
DV's avatar
DV committed
1385
1386
1387
1388
1389
  // read the value of the pin
  int value = digitalRead(_pin);
  // process the value
  if ( (_mode == RISING && value == HIGH ) || (_mode == FALLING && value == LOW) || (_mode == CHANGE) )  {
    #if DEBUG == 1
1390
      Serial.print(F("SWITCH I="));
DV's avatar
DV committed
1391
      Serial.print(_child_id);
1392
      Serial.print(F(" P="));
DV's avatar
DV committed
1393
      Serial.print(_pin);
1394
      Serial.print(F(" V="));
DV's avatar
DV committed
1395
1396
1397
1398
      Serial.println(value);
    #endif
    _value_int = value;
    // allow the signal to be restored to its normal value
1399
    if (_trigger_time > 0) wait(_trigger_time);
DV's avatar
DV committed
1400
1401
1402
1403
1404
  } else {
    // invalid
    _value_int = -1;
  }
}
1405
// what to do as the main task when receiving a message
DV's avatar
DV committed
1406
void SensorSwitch::onReceive(const MyMessage & message) {
1407
  if (message.getCommand()