NodeManager.cpp 78.3 KB
Newer Older
DV's avatar
DV committed
1
2
3
4
5
6
/*
 * NodeManager
 */

#include "NodeManager.h"

7
8
9
10
11
12
/***************************************
   Global functions
*/

// return vcc in V
float getVcc() {
13
14
15
16
17
18
19
20
21
22
23
24
  #ifndef MY_GATEWAY_ESP8266
    // Measure Vcc against 1.1V Vref
    #if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
      ADMUX = (_BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1));
    #elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
      ADMUX = (_BV(MUX5) | _BV(MUX0));
    #elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
      ADMUX = (_BV(MUX3) | _BV(MUX2));
    #else
      ADMUX = (_BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1));
    #endif
    // Vref settle
user2684's avatar
user2684 committed
25
    wait(70);
26
27
28
29
30
    // Do conversion
    ADCSRA |= _BV(ADSC);
    while (bit_is_set(ADCSRA, ADSC)) {};
    // return Vcc in mV
    return (float)((1125300UL) / ADC) / 1000;
31
  #else
32
    return (float)0;
33
34
  #endif
}
DV's avatar
DV committed
35

36

DV's avatar
DV committed
37
38
39
40
41
/***************************************
   PowerManager
*/

// set the vcc and ground pin the sensor is connected to
user2684's avatar
user2684 committed
42
void PowerManager::setPowerPins(int ground_pin, int vcc_pin, int wait_time) {
DV's avatar
DV committed
43
  #if DEBUG == 1
44
    Serial.print(F("PWR G="));
DV's avatar
DV committed
45
    Serial.print(ground_pin);
46
    Serial.print(F(" V="));
DV's avatar
DV committed
47
    Serial.println(vcc_pin);
DV's avatar
DV committed
48
  #endif
user2684's avatar
user2684 committed
49
  // configure the vcc pin as output and initialize to high (power on)
DV's avatar
DV committed
50
51
  _vcc_pin = vcc_pin;
  pinMode(_vcc_pin, OUTPUT);
user2684's avatar
user2684 committed
52
  digitalWrite(_vcc_pin, HIGH);
DV's avatar
DV committed
53
54
55
56
  // configure the ground pin as output and initialize to low
  _ground_pin = ground_pin;
  pinMode(_ground_pin, OUTPUT);
  digitalWrite(_ground_pin, LOW);
user2684's avatar
user2684 committed
57
  _wait = wait_time;
DV's avatar
DV committed
58
59
60
}

// return true if power pins have been configured
user2684's avatar
user2684 committed
61
bool PowerManager::isConfigured() {
DV's avatar
DV committed
62
63
64
65
66
67
  if (_vcc_pin != -1 && _ground_pin != -1) return true;
  return false;
}

// turn on the sensor by activating its power pins
void PowerManager::powerOn() {
user2684's avatar
user2684 committed
68
  if (! isConfigured()) return;
DV's avatar
DV committed
69
  #if DEBUG == 1
70
    Serial.print(F("ON P="));
DV's avatar
DV committed
71
72
73
74
75
    Serial.println(_vcc_pin);
  #endif
  // power on the sensor by turning high the vcc pin
  digitalWrite(_vcc_pin, HIGH);
  // wait a bit for the device to settle down
76
  if (_wait > 0) wait(_wait);
DV's avatar
DV committed
77
78
79
80
}

// turn off the sensor
void PowerManager::powerOff() {
user2684's avatar
user2684 committed
81
  if (! isConfigured()) return;
DV's avatar
DV committed
82
  #if DEBUG == 1
83
    Serial.print(F("OFF P="));
DV's avatar
DV committed
84
85
86
87
88
89
    Serial.println(_vcc_pin);
  #endif
  // power off the sensor by turning low the vcc pin
  digitalWrite(_vcc_pin, LOW);
}

90

DV's avatar
DV committed
91
92
93
94
95
96
97
98
/******************************************
    Sensors
*/

/*
   Sensor class
*/
// constructor
99
100
Sensor::Sensor(NodeManager* node_manager, int child_id, int pin) {
  _node_manager = node_manager;
DV's avatar
DV committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
  _child_id = child_id;
  _pin = pin;
  _msg = MyMessage(_child_id, _type);
}

// setter/getter
void Sensor::setPin(int value) {
  _pin = value;
}
int Sensor::getPin() {
  return _pin;
}
void Sensor::setChildId(int value) {
  _child_id = value;
}
int Sensor::getChildId() {
  return _child_id;
}
void Sensor::setPresentation(int value) {
  _presentation = value;
}
int Sensor::getPresentation() {
  return _presentation;
}
void Sensor::setType(int value) {
  _type = value;
  _msg.setType(_type);
}
int Sensor::getType() {
  return _type;
}
user2684's avatar
user2684 committed
132
133
134
void Sensor::setDescription(char* value) {
  _description = value;
}
user2684's avatar
user2684 committed
135
136
137
void Sensor::setAck(bool value) {
  _ack = value;
}
DV's avatar
DV committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
void Sensor::setRetries(int value) {
  _retries = value;
}
void Sensor::setSamples(int value) {
  _samples = value;
}
void Sensor::setSamplesInterval(int value) {
  _samples_interval = value;
}
void Sensor::setTackLastValue(bool value) {
  _track_last_value = value;
}
void Sensor::setForceUpdate(int value) {
  _force_update = value;
}
void Sensor::setValueType(int value) {
  _value_type = value;
}
156
157
158
int Sensor::getValueType() {
  return _value_type;
}
DV's avatar
DV committed
159
160
161
162
void Sensor::setFloatPrecision(int value) {
  _float_precision = value;
}
#if POWER_MANAGER == 1
user2684's avatar
user2684 committed
163
164
    void Sensor::setPowerPins(int ground_pin, int vcc_pin, int wait_time) {
      _powerManager.setPowerPins(ground_pin, vcc_pin, wait_time);
DV's avatar
DV committed
165
    }
DV's avatar
DV committed
166
167
168
    void Sensor::setAutoPowerPins(bool value) {
      _auto_power_pins = value;
    }
DV's avatar
DV committed
169
170
171
172
173
174
175
    void Sensor::powerOn() {
      _powerManager.powerOn();
    }
    void Sensor::powerOff() {
      _powerManager.powerOff();
    }
#endif
DV's avatar
DV committed
176
177
178
void Sensor::setSleepBetweenSend(int value) {
  _sleep_between_send = value;
}
179
180
181
182
183
184
void Sensor::setInterruptPin(int value) {
  _interrupt_pin = value;
}
int Sensor::getInterruptPin() {
  return _interrupt_pin;
}
185
186
187
188
189
190
191
192
193
int Sensor::getValueInt() {
  return _last_value_int;
}
float Sensor::getValueFloat() {
  return _last_value_float;
}
char* Sensor::getValueString() {
  return _last_value_string;
}
DV's avatar
DV committed
194
195
196
197

// present the sensor to the gateway and controller
void Sensor::presentation() {
  #if DEBUG == 1
198
    Serial.print(F("PRES I="));
DV's avatar
DV committed
199
    Serial.print(_child_id);
200
    Serial.print(F(" T="));
DV's avatar
DV committed
201
202
    Serial.println(_presentation);
  #endif
user2684's avatar
user2684 committed
203
  present(_child_id, _presentation,_description,_ack);
DV's avatar
DV committed
204
205
206
207
208
209
210
211
}

// call the sensor-specific implementation of before
void Sensor::before() {
  if (_pin == -1) return;
  onBefore();
}

user2684's avatar
user2684 committed
212
213
214
215
216
217
// call the sensor-specific implementation of setup
void Sensor::setup() {
  if (_pin == -1) return;
  onSetup();
}

DV's avatar
DV committed
218
219
220
221
222
// call the sensor-specific implementation of loop
void Sensor::loop(const MyMessage & message) {
  if (_pin == -1) return;
  #if POWER_MANAGER == 1
    // turn the sensor on
DV's avatar
DV committed
223
    if (_auto_power_pins) powerOn();
DV's avatar
DV committed
224
225
226
227
  #endif
  // for numeric sensor requiring multiple samples, keep track of the total
  float total = 0;
  // keep track of the number of cycles since the last update
228
  if (_force_update > 0) _cycles++;
DV's avatar
DV committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
  // collect multiple samples if needed
  for (int i = 0; i < _samples; i++) {
    // call the sensor-specific implementation of the main task which will store the result in the _value variable
    if (message.sender == 0 && message.sensor == 0 && message.getCommand() == 0 && message.type == 0) {
      // empty message, we'be been called from loop()
      onLoop();
    }
    else {
      // we've been called from receive(), pass the message along
      onReceive(message);
    }
    // for integers and floats, keep track of the total
    if (_value_type == TYPE_INTEGER) total += (float)_value_int;
    else if (_value_type == TYPE_FLOAT) total += _value_float;
    // wait between samples
244
    if (_samples_interval > 0) wait(_samples_interval);
DV's avatar
DV committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
  }
  // process the result and send a response back. 
  if (_value_type == TYPE_INTEGER && total > -1) {
    // if the value is an integer, calculate the average value of the samples
    int avg = (int) (total / _samples);
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && avg != _last_value_int) || (_track_last_value && _force_update > 0 && _cycles > _force_update)) {
      _cycles = 0;
      _last_value_int = avg;
      _send(_msg.set(avg));
    }
  }
  // process a float value
  else if (_value_type == TYPE_FLOAT && total > -1) {
    // calculate the average value of the samples
    float avg = total / _samples;
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && avg != _last_value_float) || (_track_last_value && _cycles >= _force_update)) {
      _cycles = 0;
      _last_value_float = avg;
      _send(_msg.set(avg, _float_precision));
    }
  }
  // process a string value
  else if (_value_type == TYPE_STRING) {
    // if track last value is disabled or if enabled and the current value is different then the old value, send it back
    if (! _track_last_value || (_track_last_value && strcmp(_value_string, _last_value_string) != 0) || (_track_last_value && _cycles >= _force_update)) {
      _cycles = 0;
      _last_value_string = _value_string;
      _send(_msg.set(_value_string));
    }
  }
  // turn the sensor off
  #if POWER_MANAGER == 1
DV's avatar
DV committed
279
    if (_auto_power_pins) powerOff();
DV's avatar
DV committed
280
281
282
283
284
285
286
  #endif
}

// receive a message from the radio network
void Sensor::receive(const MyMessage &message) {
  // return if not for this sensor
  if (message.sensor != _child_id || message.type != _type) return;
287
  // a request would make the sensor executing its main task passing along the message
DV's avatar
DV committed
288
289
290
291
292
293
294
  loop(message);
}

// send a message to the network
void Sensor::_send(MyMessage & message) {
  // send the message, multiple times if requested
  for (int i = 0; i < _retries; i++) {
DV's avatar
DV committed
295
    // if configured, sleep beetween each send
296
    if (_sleep_between_send > 0) sleep(_sleep_between_send);
DV's avatar
DV committed
297
    #if DEBUG == 1
298
      Serial.print(F("SEND D="));
DV's avatar
DV committed
299
      Serial.print(message.destination);
300
      Serial.print(F(" I="));
DV's avatar
DV committed
301
      Serial.print(message.sensor);
302
      Serial.print(F(" C="));
DV's avatar
DV committed
303
      Serial.print(message.getCommand());
304
      Serial.print(F(" T="));
DV's avatar
DV committed
305
      Serial.print(message.type);
306
      Serial.print(F(" S="));
DV's avatar
DV committed
307
      Serial.print(message.getString());
308
      Serial.print(F(" I="));
DV's avatar
DV committed
309
      Serial.print(message.getInt());
310
      Serial.print(F(" F="));
DV's avatar
DV committed
311
312
      Serial.println(message.getFloat());
    #endif
user2684's avatar
user2684 committed
313
    send(message,_ack);
DV's avatar
DV committed
314
315
316
317
318
319
320
321
  }
}

/*
   SensorAnalogInput
*/

// contructor
322
SensorAnalogInput::SensorAnalogInput(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager, child_id, pin) {
DV's avatar
DV committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
}

// setter/getter
void SensorAnalogInput::setReference(int value) {
  _reference = value;
}
void SensorAnalogInput::setReverse(bool value) {
  _reverse = value;
}
void SensorAnalogInput::setOutputPercentage(bool value) {
  _output_percentage = value;
}
void SensorAnalogInput::setRangeMin(int value) {
  _range_min = value;
}
void SensorAnalogInput::setRangeMax(int value) {
  _range_max = value;
}

342
// what to do during before
DV's avatar
DV committed
343
344
345
346
347
void SensorAnalogInput::onBefore() {
  // prepare the pin for input
  pinMode(_pin, INPUT);
}

348
// what to do during setup
user2684's avatar
user2684 committed
349
350
351
void SensorAnalogInput::onSetup() {
}

352
// what to do during loop
DV's avatar
DV committed
353
354
355
356
357
358
359
void SensorAnalogInput::onLoop() {
  // read the input
  int adc = _getAnalogRead();
  // calculate the percentage
  int percentage = 0;
  if (_output_percentage) percentage = _getPercentage(adc);
  #if DEBUG == 1
360
    Serial.print(F("A-IN I="));
DV's avatar
DV committed
361
    Serial.print(_child_id);
362
    Serial.print(F(" V="));
DV's avatar
DV committed
363
    Serial.print(adc);
364
    Serial.print(F(" %="));
DV's avatar
DV committed
365
366
367
368
369
370
    Serial.println(percentage);
  #endif
  // store the result
  _value_int = _output_percentage ? percentage : adc;
}

371
// what to do during loop
DV's avatar
DV committed
372
void SensorAnalogInput::onReceive(const MyMessage & message) {
373
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
374
375
376
377
}

// read the analog input
int SensorAnalogInput::_getAnalogRead() {
378
379
380
381
382
383
384
  #ifndef MY_GATEWAY_ESP8266
    // set the reference
    if (_reference != -1) {
      analogReference(_reference);
      wait(100);
    }
  #endif
DV's avatar
DV committed
385
386
387
388
389
390
391
392
393
  // read and return the value
  int value = analogRead(_pin);
  if (_reverse) value = _range_max - value;
  return value;
}

// return a percentage from an analog value
int SensorAnalogInput::_getPercentage(int adc) {
  float value = (float)adc;
DV's avatar
DV committed
394
395
  // restore the original value
  if (_reverse) value = 1024 - value;
DV's avatar
DV committed
396
397
  // scale the percentage based on the range provided
  float percentage = ((value - _range_min) / (_range_max - _range_min)) * 100;
DV's avatar
DV committed
398
  if (_reverse) percentage = 100 - percentage;
DV's avatar
DV committed
399
400
401
402
403
404
405
406
407
408
  if (percentage > 100) percentage = 100;
  if (percentage < 0) percentage = 0;
  return (int)percentage;
}

/*
   SensorLDR
*/

// contructor
409
SensorLDR::SensorLDR(NodeManager* node_manager, int child_id, int pin): SensorAnalogInput(node_manager, child_id, pin) {
DV's avatar
DV committed
410
411
412
413
414
415
416
417
418
419
420
  // set presentation and type and reverse (0: no light, 100: max light)
  setPresentation(S_LIGHT_LEVEL);
  setType(V_LIGHT_LEVEL);
  setReverse(true);
}

/*
   SensorThermistor
*/

// contructor
421
SensorThermistor::SensorThermistor(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager, child_id, pin) {
DV's avatar
DV committed
422
423
424
425
426
427
428
  // set presentation, type and value type
  setPresentation(S_TEMP);
  setType(V_TEMP);
  setValueType(TYPE_FLOAT);
}

// setter/getter
429
void SensorThermistor::setNominalResistor(long value) {
DV's avatar
DV committed
430
431
432
433
434
435
436
437
  _nominal_resistor = value;
}
void SensorThermistor::setNominalTemperature(int value) {
  _nominal_temperature = value;
}
void SensorThermistor::setBCoefficient(int value) {
  _b_coefficient = value;
}
438
void SensorThermistor::setSeriesResistor(long value) {
DV's avatar
DV committed
439
440
441
442
443
444
  _series_resistor = value;
}
void SensorThermistor::setOffset(float value) {
  _offset = value;
}

445
// what to do during before
DV's avatar
DV committed
446
447
448
449
450
void SensorThermistor::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

451
// what to do during setup
user2684's avatar
user2684 committed
452
453
454
void SensorThermistor::onSetup() {
}

455
// what to do during loop
DV's avatar
DV committed
456
457
458
459
460
461
462
463
464
465
466
467
468
void SensorThermistor::onLoop() {
  // read the voltage across the thermistor
  float adc = analogRead(_pin);
  // calculate the temperature
  float reading = (1023 / adc)  - 1;
  reading = _series_resistor / reading;
  float temperature;
  temperature = reading / _nominal_resistor;     // (R/Ro)
  temperature = log(temperature);                  // ln(R/Ro)
  temperature /= _b_coefficient;                   // 1/B * ln(R/Ro)
  temperature += 1.0 / (_nominal_temperature + 273.15); // + (1/To)
  temperature = 1.0 / temperature;                 // Invert
  temperature -= 273.15;                         // convert to C
469
  temperature = _node_manager->celsiusToFahrenheit(temperature);
DV's avatar
DV committed
470
  #if DEBUG == 1
471
    Serial.print(F("THER I="));
DV's avatar
DV committed
472
    Serial.print(_child_id);
473
    Serial.print(F(" V="));
DV's avatar
DV committed
474
    Serial.print(adc);
475
    Serial.print(F(" T="));
476
    Serial.print(temperature);
DV's avatar
DV committed
477
478
479
480
481
  #endif
  // store the value
  _value_float = temperature;
}

482
// what to do as the main task when receiving a message
DV's avatar
DV committed
483
void SensorThermistor::onReceive(const MyMessage & message) {
484
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
485
486
}

487
488
489
490
491
492

/*
   SensorML8511
*/

// contructor
493
SensorML8511::SensorML8511(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager, child_id, pin) {
494
495
496
497
498
499
  // set presentation, type and value type
  setPresentation(S_UV);
  setType(V_UV);
  setValueType(TYPE_FLOAT);
}

500
// what to do during before
501
502
503
504
505
void SensorML8511::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

506
// what to do during setup
507
508
509
void SensorML8511::onSetup() {
}

510
// what to do during loop
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
void SensorML8511::onLoop() {
  // read the voltage 
  int uvLevel = analogRead(_pin);
  int refLevel = getVcc()*1024/3.3;
  //Use the 3.3V power pin as a reference to get a very accurate output value from sensor
  float outputVoltage = 3.3 / refLevel * uvLevel;
  //Convert the voltage to a UV intensity level
  float uvIntensity = _mapfloat(outputVoltage, 0.99, 2.8, 0.0, 15.0); 
  #if DEBUG == 1
    Serial.print(F("UV I="));
    Serial.print(_child_id);
    Serial.print(F(" V="));
    Serial.print(outputVoltage);
    Serial.print(F(" I="));
    Serial.println(uvIntensity);
  #endif
  // store the value
  _value_float = uvIntensity;
}

531
// what to do as the main task when receiving a message
532
void SensorML8511::onReceive(const MyMessage & message) {
533
  if (message.getCommand() == C_REQ) onLoop();
534
535
536
537
538
539
540
}

// The Arduino Map function but for floats
float SensorML8511::_mapfloat(float x, float in_min, float in_max, float out_min, float out_max) {
  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}

541
542
543
544
545
/*
   SensorACS712
*/

// contructor
546
SensorACS712::SensorACS712(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager, child_id, pin) {
547
548
549
550
551
552
553
554
555
556
557
558
559
560
  // set presentation, type and value type
  setPresentation(S_MULTIMETER);
  setType(V_CURRENT);
  setValueType(TYPE_FLOAT);
}

// setter/getter
void SensorACS712::setmVPerAmp(int value) {
  _mv_per_amp = value;
}
void SensorACS712::setOffset(int value) {
  _ACS_offset = value;
}

561
// what to do during before
562
563
564
565
566
void SensorACS712::onBefore() {
  // set the pin as input
  pinMode(_pin, INPUT);
}

567
// what to do during setup
568
569
570
void SensorACS712::onSetup() {
}

571
// what to do during loop
572
573
574
575
576
577
578
579
580
581
582
583
584
585
void SensorACS712::onLoop() {
  int value = analogRead(_pin);
  // convert the analog read in mV
  double voltage = (value / 1024.0) * 5000; 
  // convert voltage in amps
  _value_float = ((voltage - _ACS_offset) / _mv_per_amp);
  #if DEBUG == 1
    Serial.print(F("ACS I="));
    Serial.print(_child_id);
    Serial.print(F(" A="));
    Serial.println(_value_float);
  #endif
}

586
// what to do as the main task when receiving a message
587
588
589
590
void SensorACS712::onReceive(const MyMessage & message) {
  if (message.getCommand() == C_REQ) onLoop();
}

591
592
593
594
595
/*
   SensorRainGauge
*/

// contructor
596
SensorRainGauge::SensorRainGauge(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager,child_id, pin) {
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
  // set presentation, type and value type
  setPresentation(S_RAIN);
  setType(V_RAIN);
  setValueType(TYPE_FLOAT);

}

// initialize static variables
long SensorRainGauge::_last_tip = 0;
long SensorRainGauge::_count = 0;

// setter/getter
void SensorRainGauge::setReportInterval(int value) {
  _report_interval = value;
}
void SensorRainGauge::setSingleTip(float value) {
  _single_tip = value;
}

// what to do during before
void SensorRainGauge::onBefore() {
  // set the pin as input and enabled pull up
  pinMode(_pin, INPUT_PULLUP);
  // attach to the pin's interrupt and execute the routine on falling
  attachInterrupt(digitalPinToInterrupt(_pin), _onTipped, FALLING);
}

// what to do during setup
void SensorRainGauge::onSetup() {
}

// what to do when when receiving an interrupt
void SensorRainGauge::_onTipped() {
630
  long now = millis();
631
  // on tipping, two consecutive interrupts are received, ignore the second one
632
  if ( (now - _last_tip > 100) || (now < _last_tip) ){
633
634
635
636
637
638
    // increase the counter
    _count++;
    #if DEBUG == 1
      Serial.println(F("RAIN+"));
    #endif
  }
639
  _last_tip = now;
640
641
642
643
644
645
}

// what to do during loop
void SensorRainGauge::onLoop() {
  // avoid reporting the same value multiple times
  _value_float = -1;
646
  long now = millis();
647
  // time elapsed since the last report
648
  long elapsed = now - _last_report;
649
650
  // minimum time interval between reports
  long min_interval = ((long)_report_interval*1000)*60;
651
652
  // time to report or millis() reset
  if ( (elapsed > min_interval) || (now < _last_report)) {
653
654
655
656
657
658
659
660
661
662
    // report the total amount of rain for the last period
    _value_float = _count*_single_tip;
    #if DEBUG == 1
      Serial.print(F("RAIN I="));
      Serial.print(_child_id);
      Serial.print(F(" T="));
      Serial.println(_value_float);
    #endif
    // reset the counters
    _count = 0;
663
    _last_report = now;
664
665
666
667
668
669
670
671
672
673
674
  }
}

// what to do as the main task when receiving a message
void SensorRainGauge::onReceive(const MyMessage & message) {
  if (message.getCommand() == C_REQ) {
    // report the total amount of rain for the last period
    _value_float = _count*_single_tip;    
  }
}

675
676
677
678
679
/*
   SensorRain
*/

// contructor
680
SensorRain::SensorRain(NodeManager* node_manager, int child_id, int pin): SensorAnalogInput(node_manager,child_id, pin) {
681
682
683
684
685
686
687
688
689
690
691
692
693
694
  // set presentation and type and reverse
  setPresentation(S_RAIN);
  setType(V_RAINRATE);
  setReference(DEFAULT);
  setOutputPercentage(true);
  setReverse(true);
  setRangeMin(100);
}

/*
   SensorSoilMoisture
*/

// contructor
695
SensorSoilMoisture::SensorSoilMoisture(NodeManager* node_manager, int child_id, int pin): SensorAnalogInput(node_manager, child_id, pin) {
696
697
698
699
700
701
702
703
704
  // set presentation and type and reverse
  setPresentation(S_MOISTURE);
  setType(V_LEVEL);
  setReference(DEFAULT);
  setOutputPercentage(true);
  setReverse(true);
  setRangeMin(100);
}

705

706
707
708
/*
 * SensorMQ
 */
709
SensorMQ::SensorMQ(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager,child_id,pin) {
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
  setPresentation(S_AIR_QUALITY);
  setType(V_LEVEL);
}

//setter/getter
void SensorMQ::setRlValue(float value) {
  _rl_value = value;
}
void SensorMQ::setRoValue(float value) {
  _ro = value;
}
void SensorMQ::setCleanAirFactor(float value) {
  _ro_clean_air_factor = value;
}
void SensorMQ::setCalibrationSampleTimes(int value) {
  _calibration_sample_times = value;
}
void SensorMQ::setCalibrationSampleInterval(int value){
  _calibration_sample_interval = value;
}
void SensorMQ::setReadSampleTimes(int value) {
  _read_sample_times = value;
}
void SensorMQ::setReadSampleInterval(int value) {
  _read_sample_interval = value;
}
void SensorMQ::setLPGCurve(float *value) {
  _LPGCurve[0] = value[0];
  _LPGCurve[2] = value[1];
  _LPGCurve[2] = value[2];
}
void SensorMQ::setCOCurve(float *value) {
  _COCurve[0] = value[0];
  _COCurve[2] = value[1];
  _COCurve[2] = value[2];
}
void SensorMQ::setSmokeCurve(float *value) {
  _SmokeCurve[0] = value[0];
  _SmokeCurve[2] = value[1];
  _SmokeCurve[2] = value[2];
}

752
// what to do during before
753
754
755
756
757
void SensorMQ::onBefore() {
  // prepare the pin for input
  pinMode(_pin, INPUT);
}

758
// what to do during setup
759
760
761
762
void SensorMQ::onSetup() {
  _ro = _MQCalibration();
}

763
// what to do during loop
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
void SensorMQ::onLoop() {
  if (_pin == -1) return;
  // calculate rs/ro
  float mq = _MQRead()/_ro;
  // calculate the ppm
  float lpg = _MQGetGasPercentage(mq,_gas_lpg);
  float co = _MQGetGasPercentage(mq,_gas_co);
  float smoke = _MQGetGasPercentage(mq,_gas_smoke);
  // assign to the value the requested gas
  uint16_t value;
  if (_target_gas == _gas_lpg) value = lpg;
  if (_target_gas == _gas_co) value = co;
  if (_target_gas == _gas_smoke) value = smoke;
  #if DEBUG == 1
    Serial.print(F("MQ I="));
    Serial.print(_child_id);
    Serial.print(F(" V="));
    Serial.print(value);
    Serial.print(F(" LPG="));
    Serial.print(lpg);
    Serial.print(F(" CO="));
    Serial.print(co);
    Serial.print(F(" SMOKE="));
    Serial.println(smoke);
  #endif
  // store the value
  _value_int = (int16_t)ceil(value);
}

793
// what to do as the main task when receiving a message
794
void SensorMQ::onReceive(const MyMessage & message) {
795
  if (message.getCommand() == C_REQ) onLoop();
796
797
798
799
800
801
802
803
804
805
806
807
808
809
}

// returns the calculated sensor resistance
float SensorMQ::_MQResistanceCalculation(int raw_adc) {
  return ( ((float)_rl_value*(1023-raw_adc)/raw_adc));
}

//  This function assumes that the sensor is in clean air
float SensorMQ::_MQCalibration() {
  int i;
  float val=0;
  //take multiple samples
  for (i=0; i< _calibration_sample_times; i++) {  
    val += _MQResistanceCalculation(analogRead(_pin));
user2684's avatar
user2684 committed
810
    wait(_calibration_sample_interval);
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
  }
  //calculate the average value
  val = val/_calibration_sample_times;                   
  //divided by RO_CLEAN_AIR_FACTOR yields the Ro
  val = val/_ro_clean_air_factor;
  //according to the chart in the datasheet
  return val;
}

// This function use MQResistanceCalculation to caculate the sensor resistenc (Rs).
float SensorMQ::_MQRead() {
  int i;
  float rs=0;
  for (i=0; i<_read_sample_times; i++) {
    rs += _MQResistanceCalculation(analogRead(_pin));
user2684's avatar
user2684 committed
826
    wait(_read_sample_interval);
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
  }
  rs = rs/_read_sample_times;
  return rs;
}

// This function passes different curves to the MQGetPercentage function which calculates the ppm (parts per million) of the target gas.
int SensorMQ::_MQGetGasPercentage(float rs_ro_ratio, int gas_id) {
  if ( gas_id == _gas_lpg ) {
    return _MQGetPercentage(rs_ro_ratio,_LPGCurve);
  } else if ( gas_id == _gas_co) {
    return _MQGetPercentage(rs_ro_ratio,_COCurve);
  } else if ( gas_id == _gas_smoke) {
    return _MQGetPercentage(rs_ro_ratio,_SmokeCurve);
  }
  return 0;
}

// returns ppm of the target gas
int SensorMQ::_MQGetPercentage(float rs_ro_ratio, float *pcurve) {
  return (pow(10,( ((log10(rs_ro_ratio)-pcurve[1])/pcurve[2]) + pcurve[0])));
}


DV's avatar
DV committed
850
851
852
853
854
/*
   SensorDigitalInput
*/

// contructor
855
SensorDigitalInput::SensorDigitalInput(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager,child_id, pin) {
DV's avatar
DV committed
856
857
}

858
// what to do during before
DV's avatar
DV committed
859
860
861
862
863
void SensorDigitalInput::onBefore() {
  // set the pin for input
  pinMode(_pin, INPUT);
}

864
// what to do during setup
user2684's avatar
user2684 committed
865
866
867
void SensorDigitalInput::onSetup() {
}

868
// what to do during loop
DV's avatar
DV committed
869
870
871
872
void SensorDigitalInput::onLoop() {
  // read the value
  int value = digitalRead(_pin);
  #if DEBUG == 1
873
    Serial.print(F("D-IN I="));
DV's avatar
DV committed
874
    Serial.print(_child_id);
875
    Serial.print(F(" P="));
DV's avatar
DV committed
876
    Serial.print(_pin);
877
    Serial.print(F(" V="));
DV's avatar
DV committed
878
879
880
881
882
883
    Serial.println(value);
  #endif
  // store the value
  _value_int = value;
}

884
// what to do as the main task when receiving a message
DV's avatar
DV committed
885
void SensorDigitalInput::onReceive(const MyMessage & message) {
886
  if (message.getCommand() == C_REQ) onLoop();
DV's avatar
DV committed
887
888
889
890
891
892
893
894
}


/*
   SensorDigitalOutput
*/

// contructor
895
SensorDigitalOutput::SensorDigitalOutput(NodeManager* node_manager, int child_id, int pin): Sensor(node_manager,child_id, pin) {
DV's avatar
DV committed
896
897
}

898
// what to do during before
DV's avatar
DV committed
899
900
901
void SensorDigitalOutput::onBefore() {
  // set the pin as output and initialize it accordingly
  pinMode(_pin, OUTPUT);
902
903
  _state = _initial_value == LOW ? LOW : HIGH;
  digitalWrite(_pin, _state);
DV's avatar
DV committed
904
905
906
907
  // the initial value is now the current value
  _value_int = _initial_value;
}

908
// what to do during setup
user2684's avatar
user2684 committed
909
910
911
void SensorDigitalOutput::onSetup() {
}

DV's avatar
DV committed
912
913
914
915
916
917
918
// setter/getter
void SensorDigitalOutput::setInitialValue(int value) {
  _initial_value = value;
}
void SensorDigitalOutput::setPulseWidth(int value) {
  _pulse_width = value;
}
919
920
921
void SensorDigitalOutput::setOnValue(int value) {
  _on_value = value;
}
922
923
924
void SensorDigitalOutput::setLegacyMode(bool value) {
  _legacy_mode = value;
}
DV's avatar
DV committed
925
926
927
928
929
930

// main task
void SensorDigitalOutput::onLoop() {
  // do nothing on loop
}

931
// what to do as the main task when receiving a message
DV's avatar
DV committed
932
void SensorDigitalOutput::onReceive(const MyMessage & message) {
933
934
  // by default handle a SET message but when legacy mode is set when a REQ message is expected instead
  if ( (message.getCommand() == C_SET && ! _legacy_mode) || (message.getCommand() == C_REQ && _legacy_mode)) {
935
936
937
938
939
940
941
942
943
944
945
946
947
    // retrieve from the message the value to set
    int value = message.getInt();
    if (value != 0 && value != 1) return;
    #if DEBUG == 1
      Serial.print(F("DOUT I="));
      Serial.print(_child_id);
      Serial.print(F(" P="));
      Serial.print(_pin);
      Serial.print(F(" V="));
      Serial.print(value);
      Serial.print(F(" P="));
      Serial.println(_pulse_width);
    #endif
948
949
950
951
952
953
    // reverse the value if needed
    int value_to_write = value;
    if (_on_value == LOW) {
      if (value == HIGH) value_to_write = LOW;
      if (value == LOW) value_to_write = HIGH;
    }
954
    // set the value
955
    digitalWrite(_pin, value_to_write);
956
957
958
    if (_pulse_width > 0) {
      // if this is a pulse output, restore the value to the original value after the pulse
      wait(_pulse_width);
959
      digitalWrite(_pin, value_to_write == 0 ? HIGH: LOW);
960
961
    }
    // store the current value so it will be sent to the controller
962
    _state = value;
963
964
    _value_int = value;
  }
965
  if (message.getCommand() == C_REQ && ! _legacy_mode) {
966
967
968
    // return the current status
    _value_int = _state;
  }
DV's avatar
DV committed
969
970
971
972
973
974
975
}

/*
   SensorRelay
*/

// contructor
976
SensorRelay::SensorRelay(NodeManager* node_manager, int child_id, int pin): SensorDigitalOutput(node_manager, child_id, pin) {
DV's avatar
DV committed
977
978
979
980
981
  // set presentation and type
  setPresentation(S_BINARY);
  setType(V_STATUS);
}

DV's avatar
DV committed
982
983
984
985
986
987
// define what to do during loop
void SensorRelay::onLoop() {
    // set the value to -1 so to avoid reporting to the gateway during loop
    _value_int = -1;
}

DV's avatar
DV committed
988
989
990
991
992
/*
   SensorLatchingRelay
*/

// contructor
993
SensorLatchingRelay::SensorLatchingRelay(NodeManager* node_manager, int child_id, int pin): SensorRelay(node_manager, child_id, pin) {
DV's avatar
DV committed
994
995
996
997
998
999
1000
  // like a sensor with a default pulse set
  setPulseWidth(50);
}

/*
   SensorDHT
*/
For faster browsing, not all history is shown. View entire blame