From 94752e4dc3af64db72ed50b2653665ef0463127f Mon Sep 17 00:00:00 2001
From: Reinhold Kainhofer <reinhold@kainhofer.com>
Date: Mon, 17 Aug 2020 01:27:36 +0200
Subject: [PATCH] Describe table creation in vignette, build fixes

---
 DESCRIPTION                                   |   4 +-
 R/DocumentData.R                              |   8 +
 R/utilityFunctions.R                          |   6 +-
 ...a_Population2017_HMD_StatistikAustria.xlsx | Bin 0 -> 13644 bytes
 ...ulation2017_HMD_StatistikAustria_prepare.R |   6 +
 data/PopulationData.AT2017.rda                | Bin 0 -> 2971 bytes
 man/PopulationData.AT2017.Rd                  |  20 ++
 vignettes/using-the-mortalityTables-package.R | 121 ++++++++
 .../using-the-mortalityTables-package.Rmd     | 270 +++++++++++++++++-
 .../using-the-mortalityTables-package.html    | 234 ++++++++++++++-
 10 files changed, 639 insertions(+), 30 deletions(-)
 create mode 100644 R/DocumentData.R
 create mode 100644 data-raw/Austria_Population2017_HMD_StatistikAustria.xlsx
 create mode 100644 data-raw/Austria_Population2017_HMD_StatistikAustria_prepare.R
 create mode 100644 data/PopulationData.AT2017.rda
 create mode 100644 man/PopulationData.AT2017.Rd

diff --git a/DESCRIPTION b/DESCRIPTION
index 9e6473c..2cffe67 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -13,7 +13,8 @@ Depends:
     methods,
     scales,
     utils,
-    pracma
+    pracma,
+    R (>= 2.10)
 Suggests:
     lifecontingencies,
     MortalityLaws,
@@ -29,6 +30,7 @@ Description: Classes to implement and plot cohort life tables
 License: GPL (>= 2)
 RoxygenNote: 7.1.1
 Collate: 
+    'DocumentData.R'
     'mortalityTable.R'
     'mortalityTable.period.R'
     'mortalityTable.ageShift.R'
diff --git a/R/DocumentData.R b/R/DocumentData.R
new file mode 100644
index 0000000..06612ce
--- /dev/null
+++ b/R/DocumentData.R
@@ -0,0 +1,8 @@
+#' Austrian population count (exposure) and deaths in 2017
+#'
+#' @format A data frame holding female, male and total exposures as well as death
+#' counts, indexed by age.
+#'
+#' @usage data(PopulationData.AT2017)
+#' @source \url{http://www.mortality.org/}, \url{https://www.statistik.at/}
+"PopulationData.AT2017"
diff --git a/R/utilityFunctions.R b/R/utilityFunctions.R
index b5bbdfb..1c99d72 100644
--- a/R/utilityFunctions.R
+++ b/R/utilityFunctions.R
@@ -733,10 +733,10 @@ setMethod("mT.round", "mortalityTable.period",
 setMethod("mT.round", "mortalityTable.trendProjection",
           function(object, digits = 8) {
               o = callNextMethod()
-              if (!is.null(o@trend) && !is.na(o@trend)) {
+              if (!is.null(o@trend) && !all(is.na(o@trend))) {
                   o@trend  = round(o@trend, digits = digits)
               }
-              if (!is.null(o@trend2) && !is.na(o@trend2)) {
+              if (!is.null(o@trend2) && !all(is.na(o@trend2))) {
                   o@trend2 = round(o@trend2, digits = digits)
               }
               o
@@ -746,7 +746,7 @@ setMethod("mT.round", "mortalityTable.improvementFactors",
           function(object, digits = 8) {
               o = callNextMethod()
               o@improvement = round(o@improvement, digits = digits)
-              if (!is.null(o@loading) && !is.na(o@loading)) {
+              if (!is.null(o@loading) && !all(is.na(o@loading))) {
                   o@loading    = round(o@loading, digits = digits)
               }
               o
diff --git a/data-raw/Austria_Population2017_HMD_StatistikAustria.xlsx b/data-raw/Austria_Population2017_HMD_StatistikAustria.xlsx
new file mode 100644
index 0000000000000000000000000000000000000000..b20bfd37cd4a6e870900590e8e4e77d1bfca94f4
GIT binary patch
literal 13644
zcmWIWW@Zs#;Nak3*fc{RkO2vBGcYj37p3MD>+6BYwUf?!F&hfBzpw3@P+h)F)Fox}
z-i`~iJ!%_focWh%KGQ(5w6?mLBWmSR_I}U0&u7h@XWbP_``R_fy~{0sRg`v5-yezU
z#q;^Tzn0#c9e!5%T$q;%fAXnSSB~U-QJ9p+xJlaJMoi$Lh&Zc92}@;mwx`@pscy-Q
zjc5L!^5R>^%5V2F?)~l!YyaLdeZ$JvZtdky;+WhlFFp!iG(q>fhMT_e9zp-}F2SJ-
zr2Ka0=$HSj_T$jF7QOL7N8#KZA)9+<>@T(1*<Li)Uif*-x_`x%J2>3>|LvLN`|@<g
z)dLsRGwc}xyxBR@RyA#Zz`(#@&BVZfJ7D-37#J#Y^vm;$vXk=jv-K)+b9#e(^KTpQ
z?0p~3u}gp3W&S0OQx;_eZfUPgczerO_u@vWNFx=syzj5wwF|E^TE9`5*k4uCf92Ju
zt;I?GhBqHfU6Zy{<VC5$wfrf6epdXhRCHDPz!vji#S>|@%ANnVNIBiPrkKOJ|GVeO
zX)EHzTrcUCO-Nhle%?bkiTz089g&s&9BNxTuIx;ToA%t5{n}~f!$$x3-7}<Ce^h%B
z+dhv^MNn2?wg1|;lVjFPz5ehr!NcKxeQRH8eDmc^5&KX7lXK;*+Wk6zXVgiy7$>t^
zZ4aaWHqE*rXrbQ9c<9w4o4H>97I7SzdZ%r2@}rZFCj5JlJVWxm)0X{B>IM8(Y|p1G
z*<oFlyfEeK{t4}c0sR5XHGlrf*~{5HY0skV{NEMh=dWEjO}wIRlf~Sk@(gob&7CXs
zo&^b9u|MXhSsC_e^RZ(tJ3Z4F%Qm^cGk42b@#BHU`y8v*^UP1ZO88a>>ZHHt{eI5A
zRpQR=l<ecP9$zvNcz@QW*v};=;xn60;*(#mH+<GvBo*qKvybJlNcfquBloWt_vBv?
z+;Ao`a$4xKxo-RZ@q%Jj)i?L+Tt)_l^LS&H7ZS6@C6zg;#h`e78yT2?+f1PD{d$2P
z`#PrO9F@uuUu(U-R<p^Bm5rx*fvT67*F+}Q?Pc|~m5Y{m@XgG7*Jjxe$s+Xr-R|EN
zdy=)%K7I-?de1$zRPl$9Z=S&?4S$!Y4>g^3ck}CJDz6V~S>D3wH~oc2_LrisNr9`C
z7t5DV(ekf;@KxyTlvQ<K|61L=IO&S{qD3*;MvC5xzJxrhi}m!nB;}y`nYl-KzY44S
zYS#PHX9r!4Q~DO88+f7H=5xjLth|dNmB;QzEtz%d{ghx&iBD^fZQf|O@1TUvU$ZM&
z6FL707&^Iah`MrrkA6!gf3Kyws_EzOO$Hl{g2dirv^YM##BjdhF?Vx*uhU6e*4X#C
ze4AYi6m4hbPtVwV@a&JBJb%68X0yLZKX_wBlf#Cn5Eo6YpKktpzWx0d@v`f|u6ez)
zkG*5Rwo~P}r-3xXtoFX$qDEK$UUr?g!0*XY)|0I2Z-TeFNG6)P?tRhw<COKotb-ZL
zwj@VBv98bx{Q1B|Gw{`PKIVnJ&;Pl$`)ef2FO>X$LN1J7h41F$XAjT1e77jbkMCVx
z=CrCy)|_dMNoWGgdg;j%Ux;cK#a$9UY^^Ec8&W*Y<k8iplD2z(Cmzi%<CUJVeJ{6r
zzm|}|%&$uR7n^@6h#1D1EMGq<<a^W&^^FfQg(F_Snyd5UdG$uks;z#(S1*5<;bC`q
zi}FtGAYR#sU+r&Hf`2IbPcHs^<&%x?l>nPFA>nN2+kFaDA1f4><;R|kfx<b?X;N{Q
z@=v{dvgn47ewS~7XU-#UCF5WIzux>`@R)zU+L`S~A8b~#`M&zm1lu&bC!Z%@nSWdT
zm`3hp`K7u))|dVHxiq(I?Y8|>&GzTsIr!G${*mn&3SS@0OYOXO*i}+GC2zO>46PkA
zfA%wG2TohEdHxx<h6|h@{vE0Rx*&t4Yt4eaQ>LgNmn*hD<TL+JPtsZU9nsS7`cApL
zcjWJMpD>g6(=?$SYG2iw{l2!RXWWg;f2scFL*ug7Wm=!#-m3dpy2|kIy23<*Hu>Fb
zCF?Bo*z|Z#yq&eP*jD2FT&W8;_wF<(R%d%sc6OKKI*T%&HSM)a3uW2@pPX7@d#>v3
zsc4bJH=mw8V&e#x>G*QK=<U7S@>ZKz_I0+ktDIuAOT!msFMSu&d~BY%L}AYT+;Ex2
zn~xV>?Ynr>Bp|rVM`G71@khI@e)vjQm=wM_<iq@D_FlKeC(ivU<@o>RxAEMwYfEL@
z3Uk(1^c=o$PM0TE>V@0(V{+_!c9t=^6)&4V=YC!Jy5Icu?9sLCpqy^XpX|4unSsGa
z8ebW%49V%BGQ2n=HMOKzA5ztUIfkID53clj`%iNnG7xb6UgtVvujgwgmsw@XPTPa*
z6;v*p+_3R@^!oi-w~Y@DJw3Cxxb1QYzx8D4V<~$c2VCajuzESQaMs~Ui*@A}wyu8G
zviZc)NovAEn&x_iGm7}Ck4>6$q06P#A$-zBckLp{#c7Twx-XnC3*DOfaW>=ICeNy)
zir-eT8QC!ZJN)f&hKk&tJy9h;k8>|uv_rhVNhC1&nZwKK@0{6D8xC|SMO$ps2YLL^
zRm15k7#J9&81Z>r0>k47FYlcjo1eUMV%z)g;S&2!Tzxj<XujVr>y8pTp@d12OVp(k
z-kV%2jFyNlQrT&3yuZ%#=DTgH<911R$MQ`$8BynRHF2)<wbNRk_WXRjKR^GR-MQa~
z)3(=E`^~kopS^wh?yqUTAHMx*Unf;BfBrn*@vCKfciqf=zWw?BbM2q)_x<iSpI`Pn
zp6~kS8k^I+IsEzO*Y_Xa{a#OxZ~FDmZ(m(_`|erpzq42K>UUc`lm9NS$5;Nla;x3n
zi*L`ihMkJPv(D`H=XSAux9h#7cduT3_UWDXdhhd}zx}vy;@_IhR%xI4ug~6nI5_)%
zTzzo$>%Xsp_gzu1o;UM`{hw#W)hVvk+h?Et`)<Q-tFr04Z@XW961uGW%Ok6N{ryKb
z+`js6`tRNMpSQjLboB3@oi}CbZEsfmdv|u_NBQsR;j?Ey-t+%;-rT=MTX$KW`B`4R
zn*a0fpFjF{Uw+?j|F-Uoyv^TVkM7RyK5k$4J#FvF*oZrI+vcyoH}8MvzS$iyiGC;Q
zbD#OQr~j`l+i|Z}YIEy%^VNrgo0s!1|C{#rZ<_UU|Nh^<kMsZE_j}8oyMHXpUH5ID
z_y5uU=XcWm<=>dguiM;v|9trI^S*N7_WS4OKRf++Pu;(A`#bXapQi8m|MlDRyJw%X
zUHg3X)xT#EJ}2V0->%Plnr!y-?aysrUijt}mxu35w!D95ingu&Zk-SDpTsk2>%QI2
zEC2nksC4r0&M8&jKHvANKWDFN`|Izk>v#XIjF+pAp4UFVe0TgQ_ocC+e@b@sTsmC7
z`qLYmsKUB!r{>qqkzZSQzP|3q<;{op%hf#Ew_}aTpFjKO*BH;soAu`H@pUKeemH;j
zSH;}7i_S^9pUeKfbMdC=e>T(o&hNh#Teq$L^t*~*Pd2_T<G20$_fO%zlYdSwcs~DW
ze#MS`-QsLEw=S>mTV0<2ZMT2=P06Lp-}4{8`<D63Pwi9NGw-g<x$!k^@4W5v>pwT_
zPr7(=&YOL+uijmFN73K>U+T|&k8T})nf+N_{?l^#`zy`G<u|XK{<Hq(iu2Q6hU-+n
znE5~Y@RySYU(XmEYP)%?Ei!S&znmML5gv#3s7#x*LBBIj=$)#e$D#cyZk{dEkEnEZ
zSl={#m-7A02HoAd@>V|^FP!ICy>+SHr+sV-dL7H#8uzj!D{PY8SSP!raLLR{<piGW
z^hrHsa^Lso-}xUm>-?|#i~pJL+Wf{Zj_HD$k?cn4UDFfZ)xWly9`WD%@r_zrrq46C
zt9QOQbwXU~d+mg28~5>V@;(`TRq`6YH^Z~p_GM>g?tQXIUDo=vl+2RcHSzAA0>8I$
zDu|WW=G^)EF?;&<js>r$8qQ5C|18v?HsQTVahm?YjAq|W@0S*?Np|-%Sgqz6!Zzp1
zj^~pNdU}<+RjfmHrdS`ZmTPc(&glMS56j|Ct&+y?drbO%ROnAUu}jV*Xl9P5>AOFl
zTG!vV=yrdS`aRk?HtG6Kmn9dqo<5lR)m~xo$4b8NH!GzZ8f)$_a_nwaYiQ|WkLy1C
zKi<Y+z0Hh%IfVy}62am&-x(BoKdyW{If4H~#@6oGC&hXO6Z-8K1mz}ltgcwF^`64t
zQ)fTEVC-#ENVSqHQVOtkpWAzfaZ-<)<?YrJvI=iE-(eJb7_9G*#b>ZqHesJxi=N!X
z>3jj2>~kLpGA!9vnd3jN+F??l^-`<VJK2{sJ`$YJQNf}T^w}Xh)jMp)v>og^9~%4?
zUbgw-vgF&zjvK-afy-4E-(<Y8d?)k1E+2-KF7vNMeH9AmjrlHgVe={X`!|o+HmGb;
zzOHI0$oz8l@*K@)YzYfzbnFMIZCQ9F>W9#TzL;M^6SlbMl}7P6d#FyYw*L54&cV&w
zuQW;I*D4cvMkP1J&MR&UuYH={VDp4&#ssEqJGbxoz@XrJA=0dXoq_j_hQ-c5%seG`
znB!g5N@h-F<;c=)=JfE@YvI&-_{2&-jY*|-?sVJR%tle~r$$_nZfH%?n!pkNkHurv
zjs;ug)D*;bDyc0fIXQKyuU@C%%;&iqIJi!{=sNRFNnxtkr&NoEj+GBWbN?DKUyKsV
zUMc=_(Nibpt=?|!eLs>LPS|8Tz0lds<lvUxESmU^LFdV3!(AL=!9E>^qUu}1j!AL&
z>-Cxn?0K@O=WEPN#Y@Z9Y;WOjF#6W#lm0WHh3AQ}QBsSr%3^Iz{kt}j>{C?3k4tsk
z6LJwMXHwY9yVAR+m2ZOKvKhy9<-{1de=h0KYg(Sd5M1h%-MFUl-xID#=DXQ*&N8Zh
zXJkm`OF9~Io7re$`9AJL><1h^s(844cI7%?^ZC2C`j%@aqE@*-Qi^1L`Pww{B@3t3
zQ=U?r&>PG~KNI#&kYP43D3bR$(s7Z)VCvJXyHRS{6D*z@MS6R_4taOmudubjLwK#|
z_i}!ZAhl%*;jbGy4{<-x+Tp|O^VKtB?G)1!3yPMmS-Ps!<>Dz0(TUe?Ua8c(!r*y|
z_3(79hFYcU=5>wSrUzzpg<V^_brajpq;*rbifr>^SD$pin`M_ovUn@Eil^2u8<~$w
zmoi3Z$gva%K5}H}e15C>LX>Xy0@s~U*Me?ZxhtO1WNZk0Uf6x!$X21V$8=Y4lF6^E
zqzV`DgT^x&3{7WVh|<qqsr=J-%Y~rZyBsW?o+h6Wnh+N`-AY@I)l-P|xoQ0#wuHn-
zehgJJxzi5ZI5jyTiaSlYR7KuT+^s8G{PT;8s&;aWm(us@6!Y3DbWZBt_n7e$gU^%I
z-O33q(hSMko0~FqXYvM2iZPO2nIEf@8aZ)&G{dFfFDr%PCMaZzE_x|*{s{y3&UrG7
z$(2*MB*Hyk&b~J5CWGcl)6ElqT{}8qIcwbKZ7fUFgH(*Z+A4fLEU;MU=5xjw8cr%D
zk~T}(X54y{6SX>xnMFPPteaQN^pMWiJH=IAXu5B43jNY>hQImzV;TMH5)G|2u}LgF
z!u-uCHL7dVqE4qVf7%pdCcU67*<@w+tlf^2=Jgob%zDK*W3R)(l1BgY2b?So83J|G
z*e1lS^W|CFx|y+P5_dZDlY%Q=Cwc4@_Ab)VVTyNRN(pOp6ZyvU`$yAn4v9K---eA-
zW%g(4&gPvkImS#{p>1)e%Bt{b4PQ>}T*G)|F++;+(Udh3yV(*J%@I40`r&BEfg86P
zu0&bR4rhJ3Sh_*MPir-U`W*$&`Oo>;?=UPWuG_Uq+9v)0gW9R(j4^Em%pPvx*S7d(
zzs-r8I;B64VUk7QBx&Pm4QDp_?mqXih}+?r!pX@US?mc5Z@g(-=hWlr&>TML?6R#D
zW)9^=A9E(C=t<{2nZe=_q}r;}q@pmdbl!>D=SRQr_&nLkdf)@oGEReqMz*)FeY(kX
z_vF*fu8SfXIZ8M^r!QL5%&w9-m)&6EEV+hGr7%{Wa5>?Gn$)&!YoBhOx@c1WN^b5a
z#a=4qXLJ}N=dtbUW7+UWW5uL`XP1pP_4j);6dq!q)Hzk8KUa62Zorfnn`ni3d#^5h
z9KOpXCB&_>wNq|_%e84&i|lNfg@0<D=8%xH_G#!8{g@Nooz88v5v+dhw|$Ry-d9!H
zTkIBgfMHV6mRZZwAGWSP{aeuBkKtT~;JM<n-dnJ3n%tevePr|3dmS5!Iz7@qCCDF<
zOIa{4)GN~V^Xvo$wW3fnrehzk*e4_{l{vF5?7Y|tuXXcu1J0X8Y_J!Y=r>X0$6H1Z
z*Jz1}JrWJAF;{vT9)<=9Cj`As%vd{LS72(4ee{C)-me@|ZW}~A@?UqG!PC;C%W~CI
zKZa8gKIbP*^qb(bD&=-g_Sc-HOP<_L6%$+WTtepL->eBb*|#4BGCZ1DQxerNfidDm
zMW#x^k4+C)Bra|B*t)f9TTt+)Pe)o?Us?L|)C7t)F68-EW1YkAu_!=JdY@zogP51O
zhg#81HVLDtKK;46^WR=CeSS#kr;PVk{c>iHAocaB4}<tUE}ddiRh!KidE#?!gJ+VD
zQ|Qa7KW}cGcK+SfDQ}vkWdx2MduAQ}M#+7Np6jZb1+N)Bt?ZN6dDj?n&Ny-O6o*8R
z&EqzO_+poA#<vd7rg3Mmr)<<t-go0*^9h|3lXRFFR9-$gU8Wtkh1ciF%??3>Bb%=X
zH#wzFyuCH-qMw)dzZ?289y;vrpH_Vlnq=1R6Z7p`gUaI&5yl$~I!}`Sb4WazEvwG(
zGOBP=w(eqCfdw&c)|!>gpV;2yx~XUeWZY+-lr!)5+7+K98anrEN?_snnCmFqP_kC-
z@Yb+Pd@AWXCzS<#efDmv=b0-USC-T)-!XwrCDQp^>7IZB2C+$xf=!!TPOvD<)vA=g
z{-;KNr9q|b;X|Ger9)0dMTs0&m=wg<a%7@%gUV{}yOTZkGYWTBm$?LpJg-?er8IX_
z-rD7|H#pCH-7@)+xyJPNi3*F<94=+LH-BIexDvK{Q{D+##!DA#R!B20scgz%n!q`A
zYuNRuVCw}DJC~IOF|c#}bbEgIgV4lXS1xxi;LOO1=6f@-yXJt?qnTF)9cHm#7j9Uy
zD#bZAJM`_ob&=wJUJo3sPQ4BG_PCXiGL=W+v#{WvHRcixoky6T3p%uk3-~Z>+Gysz
zMeLg2Dc`#Nx^qGfI=UvOsPRpllK-HuU)WaRbI0VOKT<9X+#-hUZVZxfGi?}8Ec1Hs
zBsx2rzeW4{H93uEGY<dL`{W{^lKib@LP^6Cn-uNq9~WdWs0qa%lVwc#p=-LZ`>Lq!
z!|3j8{wdnx*X252FVX$LqLl2()_K{oafg{mk${4mdcvY-)j@6ylItwgN;Y0iU$k}C
zH-(+2uWn_Zb+dxo>x9Bemxn?JJbo|WDPUf8=NW4XgHg@RET#$9r|vkpUF^Et6u08S
zw}E%JX%-6eCkU<#;c$}w(x5WedAY{ww1&=E{r{C4bodXdG5mZr^WfU6TiH3|)~&NW
zVW<AK$zpav=ZS>oiPlbxo==(si{kYR0zV(UD(En+{gH6Pp4BRCHQAMK9Vbmco!!s1
z*LPZ0jX<>0rYkL{FDEm2S{4<li2ZA5jas6@kn&VUabZGMzsu+1Esl%A=Pco!bU`oG
z{lnWU-Y#j44v*e!mz$8<o_A@{KGBGbA3s+sH|Xr|<8)XUcIA2W>TG?{<<DQ;T0HmC
zEvt<SwzH({GjvR?;P(hp^;Lhx*3cTI!O37LXX4M$wd$M8mayw`GLC1jZe?GY;ret#
z;yyNRkJr5yKS>BXsO9gCIV{!C>ejYCVPXUS9N~sV>qRd8xc2Cl_uiAqb6VM-w;h$(
z8xZg9Vio$SQYmjziqXc5?7De88!mjv{h-_+)2_yF^j4wT!mZo*g7Q8Iqzf+L+t%nY
zPh*cu$~8g1Cl1vPYEvJpO>~!PXl>IM>Srjb@&C@UAmsKwxhU_~415otU9xImKC<U>
zVAyV@py|Eu{@i@YICH+?<D-&A%o{FzI8nkfL3k3M!^yC)1n2Bj*@k;hPFZ;<=IrJ7
zd$v~4Q*+WC4#pF2IG(5O5{bw-x=o=(^3E<!ho5RITYML8-NEOOUsNc2AuuU&Rp*=A
zLKEErAF!|Z&fqh}U3j9KR70cLr;}0+6Q{HJGH6wIY4>HUUCTUSc1$#T!Mg~ZuL(8E
zpM@sg64Fp)NC`50)wkS*En(r)*S*ROO55|81YSnH%?4?>0M_tj+j&C^i8&Vv@2wPB
z(wWY*cmAp=(@sY+sa&rt{LisKWs@_*qUT(Hma0c}zh+=j7r*Yvm6$xKzi6_6LaCPG
zv<oE-Um_JXK6<TYjL1lRz@q0Yvyo9@Q9!lYto@s~LV~)dhk2^zOgh)RU*oyMl5bia
zk7KGG*t(>yTxH;v-5=@3;2IZT%h-|gmNjhQ);)X=u4L=2XSSN~TSf3li>~M6oUWpS
zoD&qS(w|oDJm7Tx>p2dEprqF_i=5u>xppBcfqlc(8QgCg`aXmib~ZClYcNrZI9`6_
zD+7<2RN<q)3~xRM`7HRnvvP^G;;HLe*-6=rvP)k)>9*_UNZI`L!Jm_=3cc48<lZq#
zZqDE8ahUJGp%q7N-*sr3?GncncrsM2>qb<PyQcNevIVXzhb*TEXShgkdkCL8XHocu
zO<}Qb>g$yStOCc9;`JMfT24(aZMd{+TcyS}v73Qh{`)Sc3pSScE!;D&tJ<llvdDjd
zhx`P?sm+x~(>N0p1n;xjDV^#}mS<R6yY`&swy>LmId;#qti3#QCYkz8QPCA#d1{I7
zv?Rut!InZEKDQ1WQb{pucu~3V^<r%YqnP$nNjW)dH!r?2Z%?y$U{=!HQ+?%uf7(6f
z9?$uyX6LX=Cd_T;X2FOVE|KgF9v=e>okEPZGOpTsq3;1tuHKf#B1f$<grD5rz~HHw
zsoP(|x`g-XSHC22!3_q5=ldA6mOm^AUtoMTbm<k%ZDF?pSNY2w)=|1}KJN41=iUv0
zD$4vfUNC0nYTgobFJ$=awQaUFlV?WVxr;0-Y%;@FeNE0@DBI}t)XCZ_a80h)y2pY~
zg(f^b%V#8do%vFb<<lA3vlt^hX7$@BFX~t??%!}}*{^jkt_4{)y;)ZgyJgDJTUwLa
z-{~@Xo@<dg%@xlOIM0XY)1CYTMM=wW2CvT(%b2EoTQ%uS-`cHZESz!cwk{SqcI(EP
z1(RoJ2mIY$`l%+6VU|Gg4efjLxp~eMHb^XDSo-s@1*2DcNauo}?5%SfrajHF_Dr4g
zSZQ&JnCOI=mp$*iu~q2RzHGLhO`@UoNoD5A4h`)#4F}0k?Lfb^Ps^CxYYKPHU1D<X
zacSjNp7Ws$lUB^xr)XBrcxg&>$eOQw2b{WWp2-TTa$jIb^~rsonYDKN<S7em*6#6G
zu*-U-jmyW+^QLv2>34mX_;Fgb=PQ{f(uEKHG3e-27QN$ki2P^b*I=}4nx)rT)^aA!
zM7<rtE8c&z3=++jXE?*(D&+3-o#Dzkk)3B{8Cyz(ruuhWT4W;@@a$(^&-A_w-R;6B
z*o$}0eemvO&Far3w}mFytyI`{;X8xQ<^I<dzAqSf&g}B(@ptg(UOQ2EfzQ_~eOIFL
z)D_Zp-tlvAdHzGCqnwlR!p$O<H4<|jx($yrZITkWv0QXMvzx=jM@l73A@jCscRyLV
z^_Jg*C;IEQ30w8+cpDkM(qYV8*|Or%LIz)}`Lji=yBiuUQyx6^Z|JfSw_Lbv()!9p
zTkrS<HGHxtoVdiq&yICt+b)&`3l}_nIi2AQb9Lq8t{EE}9m10Axfe8POmy`PEnc~D
z>ovci+D}(^xH4(JaB<u>RkmT*o=wx!6{;AXDV%Ql#FQY<DtE89VG?U2!=-Iy3DsG;
zTZAoCd$`}SoU=Nuxco-%Ru+Y+xzRNXSFtCA+&c00#sM3l&=blF=B(JkIAPhX?1`RR
zr`=qh|76|+tKXbSPfx9U%(+Qb$#Zf~N0rO8X4$9JDib<We*DZ-KExAmG$SF|G5m_`
z%4<Qtzx3XbkIA-o)NkE*?U8M&x68E8{XdyJ`yE#6l>Yg1mod`AE9IlWGS_`fW@%aM
z;m-p%@3daR@bvNTN1RnFw<}k8>L}&Tds3NlQ#s)Fik2q%39a+43-oj-*=_Xc=-Rl+
zV)o;Q&(1l#On%4{@MZ1Z6T5T;XSk>B)R$-s3G&_Zt=NH0sxV7`QOEnKa|BYeOP?%>
z(tdZ@yePil<X@J(I;!7|R(BovBPq4)!m)hSGDoG)9&6Z@x~8x5=eV@hIoWgTwcE?{
zMaqT4@AzLiy~|$TpVei-^ry_WkJc1Dinz>pOZ^qIplX~N-|SWAMc01)_ENf4eaEA^
zMR9!Aae33-7hIKH|NC8HvtODSTaLW`i*^zIEJc^8dk-#&dj0mYd6)LnuHT(iE2W>j
zbo6GCsuZj5w^-YB=W){;;p#09T?=;hE{NjNXU{zQx8c?Loe%03#hqL4_2Pvplc}P8
z16!|{^jEeN`TH%#hq@>5vz&Mo?!N3=*6%O9@ztNi{jYTIyn0$(OL^U%kJH!NE9$NA
z<MU3aH;ez|FkwpB{eOP1YwEXtV`O}I^7Dai^;fC0eB~x|?oc>)_Pt<QlZA1C!?DiV
z6&#PEH4~h-RyNM+&UU&Kx+0s2GfTTjnB#I%;i~qvl^?h8Trk`Bs6|0hCct@WlKP@&
zO|u#Vo<`pU*{%`tZmaVQA?wJ3<VUi?CyWG_F}b;{T)*w`uKhb()Rx$`wy6dDzWdR!
zveQ7->VNbssR^-rn8XY>eU8s=FRd#+>$74`R7ct*q3|=aygfSi{coGbmNHf5*ZxyJ
z>y6jEp1nGS>C(jgy%ir__P#OLr<l!Yc=7xFOIH})3eDA*y!mte*3TDyinqV6wEMRD
z@vFPDcmGYR{`2tNj+?ps>DNDJ?Y&uNQS<IP|L?QEe&5;nVDk6ky#G7)>+ieu)_nil
zZO5;kExIT7{O|NQ``;Gt`)7Oq?C$<^b~XR!`0(HSv;Q15{~VgPcFy|nvX1xiHNU?+
zE-at^zSYlC*6#o0_ucc$kJl(KxIg9ejPLPMJ8r%0J6~7#=Uols_ww}e)w?VI*L}YI
z=i45Z-kVo`8vZWYdQ-m7KJ7#P_wDx6?U#SL`EmJOd-K<izfPB*pLg_6apt%7zb|)R
z-|c^U{<`OH`FFB^`n&V~6TXP4adp*o+i%N%Uwzgv{?OT1pQhXAUjM)6p3L*}wcGBk
zU$^hht?8f7o-Hb`p8emhI&t^yXXoGXe?GDH@wyl9&GOIt?wp`5U-R=xQTcXFyQP=J
z`S+U6`}HDc@6KJP>Tb#TzpXcX`SP*+wbu_HPhbA=?(Dl&f1d|4zpvZAYwz#FpT4}m
z|MzuW`Jco7vv2<___qD$<(v1*x37L%zt4W%w%1qd{(iVE?D6YMeSKB&$E9;GJ!v-m
ze_HMS`JLwH{p|l#Wc}E<)m;3%{@1&+@0_3i>2BS&|9O+&pZ*(vZTY($KepWdUsUCA
z?=L@S%ErL+mTRsg1H+un40zTXNI|A-AQM!e87tVT1Mn2p+KIl|hYfhz-v1SK`+n4u
zJ-NqXZ;#{pzdsm{1wOiP#B9>Ft^e!vq@%e~-&~k{;ri!&9$#OX^uFpi;>^RgY7tB8
z!J}mydmI10d;3r_?Chd@4>DByH^>XE-XnaYLEKY6YV&7{NWG*(6RcyGob>WrdHv+B
z=C^_Rr$2dKp2K)nG<a<^^OijAfZfH1{%=UW&dV3SxO%?930}^#MRF63F9!7|J<!%S
zV*ir+^QrAqdnMT$%BR*h&kr&y=e!!9CilLIJD>CR+JL$@e^fqy+CI~D?fQFnYnVVG
z<Nx7j)g=Z7235TC^&*gvDb7eNN=*qaDay=C2T$8iope6$kO9xJ_tjk5%YBoU6x^7<
zPIp$Dn%*1<et{_G#alhatU2!0r8S@C6SlSbx9_}tv}RiSzGhpuP4}i|8J!bZu(~$+
z?z)iI{ojA9vmQBSy6iKbcd1Lz=2y!Uk_1*S4%&J~@%pS+V%5&c@)tbQUnl2BoZ4|&
zL}^xAl*>D7+q0Y4?@GTGxngIjcXe~qlQ-dqwtL5lrmTLH?&5dwiczEy$78wBud_N9
zoANdBuQb+q(a`=tvy-JoRLbPeC5~k`pKQDkBl=6^yZ@6@%OjHcy03V@yX0;*_o?z3
z-r2p1Ew_&r)tNW_yJY$HD^vFMgg1RfIvFmUiof<wT`m)*6LaL7@VPDFi8Ey5mhR56
zzIW>6?#6i!`Mz!X5<2bvVg7?w)@`r;D`fucziJK&XlY*Ct?G;n3}=Z6=;VyVqLN~L
zFl7vyBz-$4HvhJnNZb4G+BOTf&$QFIxhZgY!QHLdlh-*;{+3j}#pQNXM$m#6NA9hc
z|C)JHzIt=nfu<(T1Wz0H_9u&-J8NX0K3)BG)>pX|XM_%_Py5}S{8gjhWzL7EM}8H3
z|E9F1YNnEnnooh%#xj%5ak2lt7)iNnD_za?Qo427u)?fQ?V8uhlAPO-TNY(c`l}Rl
zYHP0IlUW+I8q>>kPA=}-o3`z_1@mr>q)^5a<}4ADTdqGpy?l<oShvcee3vbe!Rt;b
zOfp(z(vUNC$;{G~*2g*GzsYgTj+hc(vvcd4Jpo<3{h2nxld=<*-qiGUwf`i$De#eA
zV9&mVJz7%J<MLikHCniA(xgRgEtex}uLZUHP2P2C()OOyljS<@oMjPaH%$w9He2Oh
zSyyY%$~RM1<UU;YBz@P3?_$%-Q~V?szdNsgZ~uq*Ta|$?4V7m_Ukot4TpN1#*y?%f
zboisUyfU)i_{S%7<4yJr-@o4UWxgbRH^Jx}i}$1LoXJNUW6q_o$y@)J{h`A8Gj;{Z
zd%jz2++$Gk>C}E*x5AI7ijJLD6VvTFmaX*Od&bQ?Tk$nLM@n~z7vAFg_;pUI>Xl9A
z#e(nimc*JE1#izfo>4eKOn#}qkNEujl>B*%U#He*F6f*5ereT#m>oYqOgd?MHhYim
zw=TVBoF}WZreA86OBBx55<ax5ZYpE<-7WXRmYkML)&5xFJAKOW@RI9irE-6I-3Ywd
zv*P~AS#neF2UTwR({`%k8t0{y6fc!Pr?_uid(I|aR$5g2IqG?>_2jo=S36dG-udfx
zcfuO`81o9JQ@i}VZtcCxTE>6l_knlJ)eLW#6XcnyIo>EAVP|q-iEX*y$`i|S(N!e2
z<)W)hEXyTV6<e1}%{x0hsyddmqYx?b6W=ILs<l`nc+yVkrn}1T4ycIBC3lrtFj3L&
z0%d`@E=CS2%uu3%UmD5+i4`??@Clq`RI+qXVefdtV7FZm&Jma>qcq9crKrP$Pw=Fo
zl4VP<0+b^#kw@?(3h^*U2qY$`Wa*^h-tmNEqKx7sWtXBBk3NBuf^%j(o@qH}mUThi
zy8|b8GN(W1n={Y4pzhrP&RxvuFZkvxvYzmA=F`5~xF;*7t*iPvGyg|gZBXt-?Hk|c
zimoZk3EQyL%T(BKZ;iX<)E3da-<KA(9$y`^TlUz!@I3RgC$BlJ2ra)D`_jGLXi~L`
z^3DjiUmxbAEIE4UyUedzqf0*}+}u{_y17{uJ~l8C+VNFN^5h8*U3O(<Ny(LO6H-)^
zmAA_F^rWOL+15O9Vo%SNA_JpI6DRsr{<&auslA5v_ruE59``2pJV}&%`Kt1yN8$bA
zec^6a;)hRoY(09yLp@K%&5db$9N4(0Sd1$J8yCgr=4NDcNwZ%*%5B%F@D1VTz1^Zz
zuUDncTYr-KxYwo=qC!T`l*Il0GSt33tX%4JDUkWZx7x2-^Xxy=mM>VY%l_2SLWWP)
zmgy8*Y25kC7Rztfb4_-2nZMyod8>~`_|exbOP^akls~!c-Sc~fdT|0a8BcpxT<NHc
zT=a5p?CN`RzmKe1*LL;v5jVGx@4x09>($$)R?k&A-Q~NyX^YX68!Jvt``{eCR@*gs
z>FM>)*JLs*k1kbT^{!O!Nafz_d*|!>zphK3`npm(Y@$e{*<Cqxx71ati~ppaw_mYF
z<EguB@1(Ogr|7OW>6nt^Wv?qHxwgGGIJQR5E^mg{I{6v<c<x@j_+-AGt<RCX&rv^*
z9{FT?G9%Vo_r$!j=WNP%)w8U~z4~#zc;CL*f2T##*7nq>Po6PX?)v@te&1GlojLLI
zzPsOdxyar*nc>Ivz2bwvdSp(X__1e&*3DTh>mAMf8~>ZsTIr{W2YszuzjNKyAENvr
zMnwuK^Rw^XY`^w---I%0XTImzlWHI3T;EwzIBDs6$%o%>Zc*Bzl39CvmHb@)pNmxg
zTmE(Bu6p<WKl{O__dzws)ITkTKUf(UPC4Lfyg(P)q!cBVgKB4eNGk@)#kJ68wStoG
zZo!4oE9C_)WeVlUsRVv`&->y~6ZiCD`ScyW-!~ZVO!hfu&1br{VZr1&6TiY8Jj=hz
z?JB!Er%-IC%Oo?!iI)mHo6lLwNO%V=7VZ4iu+Cy~f7p{Ex1&uH!WT}+U6pnGkva1%
z*2!O#+i&!nPIxH!L4MnOHRX>lo}OKF+CI);rRy11jYWsfG+x^N$#B~ihQ_IdIUCp2
zGJ^cgG~?UP<qQlABE+n-fqJx9AIbpxcx}i*zZL_5y}w0$-$x}xx@=15k?s}$x<LNI
zluag$(|lg*{oBhtrPO>~=go@OXR1HPrCV*-_4amKj%q||iQnPX4MHnhHK*Qt^5yT_
zhek_}SgrHEC!t&XOH+5Ru3lIz=go8L8WZ+zlWenGJNLEGu{A4FPrse|a*5j(qYFjt
zia8OSHSMQz4=+;inDN%()1_-cyS}yrtUrD}AbaPf;=l9rl2>_g?lgO}c<L=*B?aks
z1!CL6<}N*YWBKiw)i+Jbqpq-Z=uF+c+45*1PvrTP2ew@HoUv?2+{T|4&*N6DicoPB
zc(YK^cu_)`tAw6<0>`sAA<d!H8EX=cx1FnzZvUA1+`wZ|{95t-5$=Uj^Eb`oH9xRB
zs+0Y}+Brs5zbhtGv(~pif2%DJ`b=cIxAKJGS4-V8&RglF%`1-DvYz4hb4fd;m&LpG
z^i3=5`89vX(M+l3i9!Kp0x9o1BqUGIPD$WcqO<6z#2LBGv+`d)*zv4yGJin2&XN_D
z7H>jQ9-myl%p&?_efew$GaF8usShpM7WeTd+b^2GURSF17IUrK<BQWD6(5dY^aI=k
z)o+#CwTO{{A%g{9`W9qhU`WYN4k*emDArHTFG>Y9i+Y26{h15}_Wss3+pGU}Q^%4<
z)w-7MNfNP(KZf0AT($e|GTr$9_sSZ(4jsIGX3ur=&sN4V`LDDh8#itWRGw1G;pOnr
z&BIiF;q;<Od;v+a!A+sPO@g<YTpvG5I$`>>x6%D_hJjy`@16;pro0x6vRJNpY?}Up
zv~7<iPc?5ocIC{^D`z&Q{pmi-SkC$Kv6PJP8ABPCU|G?NaX}w6R!(1*#maI#z>)V<
z<eXBYKZi>bvZ}v1cFP!MzuYEuE{H!NC4WuNk*`&EBcJPDJwN~9_Lql?vrVUJ)rhi(
z@O*C$$ZN0^=oDYDyNvyb>HfXi>MLGM((^p2aQ0W~^b2wQ&z{tF{NKahw0no)QDKj*
z8CnzXY!*0kfTga5Ike%aTh{aKQCl9YZ#u8N?3wreCMSog*lklHxK6K~Q5sy&X3Y60
zt$N#2P3>LlzHhC+bxvdFlAl*6zHN4}?rxmQ^F8uO?&TS5@?}3ia^89CbL_}*zg=8q
zPn|1@HXj8yWe<8D;VxoiVEB)>DJy^+VTlC=p!k|Q!5`FzI{N;%$iXkOEO-^CJlc`d
zGnebOqV#Uo>tRv+{||?G{d)U6_rkY5v**qG;aQclJtBCHqT1V7|7)SXTm_f3-}c#7
z%Ez7J)fD1d-tv*Js;JSW>`&ufS9yg+Z6PU5-nN#CZMsW6=N;$@Nxhw#{^=su86&xs
z^VM`8-aLJ?$@$imQujp10<I9rbq=50@67wSKj7)p^R+LNceI>&oWmg9<M5#8-l>C&
z4Vt$dxL*1$UbLF$V1}lF`=Rf@1Rj1ZXMekD+pAS+Td(KE9Xs!9UY1*EZtzTgpMz5F
z>#LX7^lC}Fy-)19m-HB1a5L}NvF{ZF14A|50!)~Jfg##CKd&S;uOvRCvLLlM78F!_
zr=IpZ3|bNSw@V{>$_`de#VcF5<-Aw8L@EpW3tc|4E$92!?>%<|RtX6OEMBLR{_NaN
z<H9)~OM<5!<l6EuNadl1TpMFYh>_kWm72NsZsre5j3mx)=kjUTc}OKOaqTYEBTHCA
zt{e$!Jm8^L>Z+Sp>L=nWZo*z<DHAt2gp2!-+qJ74>W`~Wyx6qm;9)lT_d7KBn|H^~
zb5>OhUG+qBtAv`KmsF{g*JY&`&ax+ZtL7eE@x^l4gHtho`~sBhnLeB<eKyZr+fKy9
zyN1E^yhYwwNfzT(Z-v(yH165y=W(al-gk+w=d~dHdrM=EyiLwua8l>7rol`-?I}mx
zG8dc?Vc4dXy#JW!(?!ksZ?>^qHoq(W*ZFx|!mG~TXHP_0K7NzUe*cZ!@eS+mKTN*<
z@1du~Wd<Kd(+%RQKeoO6%Oi8`-G_-udiz-R$IN}xoVm+Qqv`{z^^MYR*A>@ne{R!O
z&EEdTPVK_6qjzRb<7(G4{UiV5>hfTBF7C!{d;U(oFTC-~N!g~|k0m$Ee{*og5BVog
zghAC&N9FT`UPcB6e|AtY#mFSWfY{D~yq|#^X=?|B38{*~g9riMs2Y)%%kx82LrF<S
zjLi?|noao;D{w(8>Y+Lr7#Kb?fi)x6*Q0AagtUeg)N(**y~_sH3L5?ZFIdH~U>Ds$
z<PjFo(pQ9m*Vxew1e*)4pwUf19*vMf7{S26(5VPE1rn4X$DxePpqqo-*#?bWAdFh9
z1U3g_Bm><9<VF{&2|Oxb6Tp3Q<Ssh83CPVC)F5`#0-FGBslWml$_0lD*0h3LPof5~
zoi?h0$VQ<%3%T$H)v1V}QPagz!=h_PF4I6IJVN_*JtXbW@*Z6`avlPedkEeC^|6+M
W0p6@^AVs_kybPJl3=C%tK|BCoQF&Pa

literal 0
HcmV?d00001

diff --git a/data-raw/Austria_Population2017_HMD_StatistikAustria_prepare.R b/data-raw/Austria_Population2017_HMD_StatistikAustria_prepare.R
new file mode 100644
index 0000000..9021ccc
--- /dev/null
+++ b/data-raw/Austria_Population2017_HMD_StatistikAustria_prepare.R
@@ -0,0 +1,6 @@
+library(usethis)
+library(readxl)
+library(here)
+
+PopulationData.AT2017 = read_excel(here("data-raw", "Austria_Population2017_HMD_StatistikAustria.xlsx"), skip = 3)
+usethis::use_data(PopulationData.AT2017)
diff --git a/data/PopulationData.AT2017.rda b/data/PopulationData.AT2017.rda
new file mode 100644
index 0000000000000000000000000000000000000000..bfda5b81a495ca5009ac551f4b8a4e05b721610c
GIT binary patch
literal 2971
zcmZ>Y%CIzaj8qGb+*rQ-6a$BC{eKYn4kB>i2ORV6Ed6-#UACUg2j#u9*-oZzHb`8g
z#FdoGQsp^It#`_;{;Z5snVYgQH_cyV>>RAVSaaUuEF+F1w=#Jb<#HrdIlijOT)5;*
zznia=;-i_bq)d*5d|SCGrPpx5%vWkX^H-Wp&M-BYxpK=DDG{}0T2+~^veIVS20Okq
zTfW%Y=aRI>i7S^c<Z909xz&6rL(2cs%!$ipRn5u`zEm~O<JK(0SBwTyf|I4x=C3qK
zN-|(H`6@SY3xl(B#=OO*5&~MwAE?b_YZS_GX1E|M?89ilz-VxRB`M{|$rlW6EC&rt
z7#NrmG8h<UN^mwXaJCpI3k$o<V89O;m#+-*#jk{cWs=Igh06jvd<{;_cFKHJ<>T*S
za-qttKiExeR?3CTYV#H=eC3%jbLA8NfD1=V_yf1}GH&X%natT}A~(z7*kU!eSyCAn
zE~Heo^%}d}^t7`-|KP!i+z)})s^>1dw<LUVHY%Ky#CX?wd3kzyiN%8#9UX##f&vDC
z4hvkIU3yF+E{a78T#1lf^We&cf(=T}di6IRD2o-e?Ak0D(0G_JXkBNI^y1Yq9M?tl
zC(N}rYgpZS^YD8;6`u=jJm+5;MaIW$UtxXA<mmcY7Yg=Y{Coc9w*~vte<t1kBj@tR
z`}8zVS=RFjZ#D*spJ7#-cQo_%o1ph|J)$0O2`-)>x_xH9jmq_jDczIwO-s+N7TDD$
z5!1sW+bGeP&Zc%oRdxzPipP<a4pDEH&vQwh{329z{(5fC$C@rJ3kuAg)L8o@O&4mp
z9uV<g`MUR%k9eYx^bGG3X3bq!Z#z7W?bm8k(R;pwRoo+Nrm>aGDvP$}sMD@ftB!H9
zMfIgFi<|hR_tms%oWcfKCx3_BoM!Ts^LmBknrC^lU0;U&`dW6d#6;xWe3P>iStqf1
zD(by#ndGV_dT6oHI(EHJ>^7->$KvxWDlTvaEzR9HtwCVI@*8}16Aw8w8(ccm$dqyI
z&q19Fr+7|YXqqULz$I|yDM#Ujcjq3wd&KV7AZt~?mcctQGwy}Z`h*~!37pOf8o>oB
zO-d{tMl4NTVWD4mw<PFjY`QsvL1~kPeeslyWo4f(Jvvl=WyY0P`a(&zyKc?4Suj<%
zd;RZ+8rN^%TgQ7uT5)yx{`%FG6PXN7O0pN^x_<m&TYET=;Y_%pvv0kx?j+rFYU|QE
zcQ-$_pQtAg!p{EsQ1aXNy&H5k@VhwOpW(vrQZelB8~!qOqtb~YCXVlK1!}rHlM>;m
z4t<j?nq2I`=6tZRe-ewinpL@L>JshDHR9!ujvFfp2Xi=>Tw34x@ZR$60_rm+9Q>;h
z`cv~~6>A5dNZ-}nH*URK<|@&rs&6`J=go!g)4#p++8gSqzw2$@hYq*sn^WRcn<sXx
zx^zD2=c^MTF{LI|N<|kn@0zVS^pEF2t@I0xK#Nm%cZW9LN&dE~tH6b8>FQ^f=U7y$
z2j6<LZRT9N)O$bgFD_$Z@?56tBzVmJ^2!^2OZEhF$QtWB4lzr8vqY3Z>2P7D#no3+
zxA-3I&%g9uW9yOZmWd1pgk^WJWrP|_M_y(uSUoj4FkIu?qIKaJv##cIg`P|=n`*2#
zcUKnICC;CxC7aoJbvay|at<w9nUt2zap0_iu*DgkNm`4SG%~XY?`B|7Y+Mj~Nx-0u
z#h_7Q<AnxBW{#Z4y9(!|FdX1%WM~s;<Vf%k<-Du#mTN}oJvIi(CF@=|J9Yo>eBh9w
zET<NtGbOC!q<gA=rt_p#iGq^GnrVWvEsHmJ9Vs?A!>Dqo@091H>6v9rY#m30HU(WO
zp13r5?~|26U9R(mV#EV@R<+tooR!Va*yPst@<#3ohui%+9LA>`ba?%C-DEk?Gp*^?
zgCbYoBNKLMO!?4|?#0$J)$XuMi^{~*lNxc6_pJ}LJndO(ar#LX!%9`{mCP;7Op+%!
z*c=Z_^i5K`)3bSla?dj#!((Uo7EWNj7UCqM-KOqVrX=CZ?9o`LGl4~`^U#d*y8bq=
zpLyJK3j6ffpkZ6lrq=};DIz=_f~*f3GB}Ss@Gx3<#g1)e!p0+JOTsFAQVuK4_`ZJH
zq6?<=eFjAg;&$(>FF0_`T^5nhJ7YbM(2Ro~8QF8ZjLsN!PVf5?<0zFAyuE(%`&(z0
zG&xQ<9^$IN*y?j<&*|yXVsA{<9&y+ob6%4@Z~GZx-HKeBbRARP;FE1%BzUrQ%Fj1k
zxn-8SbIsH8f(2nW7Edzu<8pH=*LYMo@y@21I}_)ZWO{#I7V$x1nZ@Hy13k90DYEyi
zH4Ae#uX7SE>-;Ri6|$fxf!Uf_E&AsA1ip!XW=GH6Fu60|Qa|~#jevrx#J<k@g#yJZ
z!afJAQRVt4xBm7E_k(*4=C7>$In&JKptyv$@BP0bKb03v(!3WhwO#LR%e%#ni*}z7
z`grL6#->Y4uN-`SV)}}EZ#sDt=1!DhI-9V%Z0qc}yvG|R)P?E3GupGQKUI0x!uh)<
zeXZ5{-gU;{_zLM+=L9VN$p!jV+HYJpOD<|b#x&krGgn2V7X5wxM#etUy!fVrj;*Yx
zL&wrfv(BBfI#!#Q>G|7T_pvS8U#4x}zSp(Bb=o>Pj)URg)I%>+nS;O9T*^#*;-piz
z#5%}Z`(oN<iA0A5+50>s1YT?ZxTBxD-^KW0pxesyc85fpKYx~-J`?1^D7WC~_mr0g
zKkn{eaNXka_xamtYod;?e|WI)*WQ<G`PsWyFxbx&TyJpsjGN$=D))!Klnaut7@QTp
z@3VUA^cD7wilVEQuZ-Giz310X5v%f$T9+=?xT|5a&I&zx@uM}`&a$Xgb6M%Bokc|w
zFLq>f-K{y0Y~i<Xul3_xQR^Q68&BJR%9Ov6s4~%U3oEWny>{i%=6hRaC|x&Ac`6y<
zeLH1;^lo<D+N+YYjpfBoYWh^ES6J4_&h+K%t(>ZSWXtUNt!fN<kGIIpsGPNC{eo31
z%Kj<Y{Cl^yL_tCJQ1_cPT%swy=caP!++^RD;ujlxIO+S*&vClhl|Ea~1RCBbKc~Nq
z&*bNY=cV6b=P*S6T{koN+aK%c(wTK1f9Fd_%dnQ6y)|QTgYXA)bJp^gwzex@7=D;`
z;+*==cA3rUx|8L#o(cPH5$wMElbz*@Sc$;7onATpAv+`<zrXP8$MwoYdt(+3F^3b)
zXD{3<^$^*|{cPH${cE;a+cIff5xOhm<@~c#_{^NARw?_o2^lAJL<v`JTUY-&yKimz
zvkx5N-~RJ{dUaE?tmDUGktZhc)0Tc-u|;r|XHlHUQSYj}f80|yNN}8ST|9#$<6Q8o
zn<wAduetA4`B{l!R;b7QMQgjG_lA|d4?1&n|G|wZ8n*ez^vfq*xDw*G_iVt=o2!3%
zt1eXAX3A!EvF1Ri)vcxz8;cgb=CQu8FYlf9@dN<|Q43cW{T4U1e}|>!PPyjBeC>f{
zROoO2U4MQZoOj4dtuO0}Ei<!+tly{YoG%w`zGKH*+%A}B6ZbXvff7>^yMO;tR*#0H
zFQt+Zn%(MGr?f@PD7iEHwA515N|7F30p*g(EFtM9n%BKKRQy%DiFH|O^zPYzMZfgD
z)M`A=d^G)V+M4=`nr5ZmYfD$NYQEV!H&IwK_FF(&#`oXX6!IDwK0UGX*WOW=@?ZGz
z(d^l+ymha#&P-VIY|`SM&)XAbr-W|09=cOy<rcj=8&7PSoqFJ!MLe^no6FtlaewE(
zdvIjqnW^tQ(~AEt>kn`JC*@y#;Qq;lf?@x=o_8ATIp%R=<8z}!22&3O9-NoVn76ge
zK=ks>6PqQZD+JnlH|O3niZEklx$gBnJRtY}wynD@gI<=o8BW-Ljq8YXvU=)*bBE`*
zt)Fl<sM5+uMTy(sB(oNG?8#?gS?_*DSr@+#u<o>ZXeP+oy<y*>O0T9`gP6~XnHRnX
bH|J%Y@Y6DWCy;Ibv0Np%m6Kb%x@G|Ya_VYI

literal 0
HcmV?d00001

diff --git a/man/PopulationData.AT2017.Rd b/man/PopulationData.AT2017.Rd
new file mode 100644
index 0000000..805e989
--- /dev/null
+++ b/man/PopulationData.AT2017.Rd
@@ -0,0 +1,20 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/DocumentData.R
+\docType{data}
+\name{PopulationData.AT2017}
+\alias{PopulationData.AT2017}
+\title{Austrian population count (exposure) and deaths in 2017}
+\format{
+A data frame holding female, male and total exposures as well as death
+counts, indexed by age.
+}
+\source{
+\url{http://www.mortality.org/}, \url{https://www.statistik.at/}
+}
+\usage{
+data(PopulationData.AT2017)
+}
+\description{
+Austrian population count (exposure) and deaths in 2017
+}
+\keyword{datasets}
diff --git a/vignettes/using-the-mortalityTables-package.R b/vignettes/using-the-mortalityTables-package.R
index 7e96436..ba459c8 100644
--- a/vignettes/using-the-mortalityTables-package.R
+++ b/vignettes/using-the-mortalityTables-package.R
@@ -1,5 +1,6 @@
 ## ----echo = FALSE-------------------------------------------------------------
 knitr::opts_chunk$set(collapse = TRUE, comment = "#>")
+options(tidyverse.quiet = TRUE)
 
 ## ----message=FALSE------------------------------------------------------------
 library("MortalityTables")
@@ -151,3 +152,123 @@ AVOe2005R.female.mod = setModification(AVOe2005R.female, modification = function
 AVOe2005R.female.mod@name = "Modified table (lower bound of 3%)"
 plot(AVOe2005R.female, AVOe2005R.female.mod, title = "Original and modified table")
 
+## ----AustrianPopulation.RawData-----------------------------------------------
+library(tidyverse)
+data("PopulationData.AT2017", package = "MortalityTables")
+PopulationData.AT2017.raw = PopulationData.AT2017 %>%
+  select(age, exposure.total, deaths.total) %>%
+  mutate(qraw = deaths.total / (exposure.total + deaths.total/2))
+
+## ----AustrianPopulationTableRaw-----------------------------------------------
+PopulationTable.AT2017 = mortalityTable.period(
+  name = "Austrian Population Mortality 2017 (raw)", 
+  baseYear = 2017,
+  deathProbs = PopulationData.AT2017.raw$qraw,
+  ages = PopulationData.AT2017.raw$age,
+  exposures = PopulationData.AT2017.raw$exposure.total,
+  data = list(
+    deaths = PopulationData.AT2017.raw$deaths.total,
+    dim = list(sex = "u", collar = "Population", type = "raw", year = "2017")
+  )
+)
+plotMortalityTables(PopulationTable.AT2017, title = "Austrian population mortality (raw), 2017")
+
+## ----AustrianPopulationTableSmooth--------------------------------------------
+PopulationTable.AT2017.smooth = PopulationTable.AT2017 %>%
+  whittaker.mortalityTable(lambda = 1/10, d = 2, name.postfix = ", Whittaker") %>%
+  mT.setDimInfo(type = "smoothed")
+plotMortalityTables(PopulationTable.AT2017, PopulationTable.AT2017.smooth, title = "Austrian population mortality (raw and smoothed), 2017")  +
+  aes(colour = type)
+
+## ----AustrianPopulationTableCut100--------------------------------------------
+PopulationData.AT2017.raw %>% filter(age > 90)
+PopulationTable.AT2017.cut = PopulationTable.AT2017.smooth %>%
+  mT.fillAges(0:99) %>%
+  mT.setName("Austrian Population Mortality 2017, Whittaker-smoothed and cut at age 99")
+
+## ----AustrianPopulationTableExtrapolated--------------------------------------
+PopulationTable.AT2017.ex = PopulationTable.AT2017.smooth %>%
+  mT.fitExtrapolationLaw(law = "HP2", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>%
+  mT.setDimInfo(type = "smoothed and extrapolated")
+plotMortalityTables(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, title = "Austrian population mortality (raw and smoothed), 2017")  +
+  aes(colour = type)
+
+## ----AustrianPopulationTableFitComparison-------------------------------------
+plotMortalityTables(
+  PopulationTable.AT2017, 
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "HP2", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>%
+    mT.setDimInfo(type = "Extrapolation: HP2, Fit 75--99"),
+  
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "HP2", fit = 75:85, extrapolate = 80:120, fadeIn = 80:95) %>%
+    mT.setDimInfo(type = "Extrapolation: HP, Fit 75--85"),
+  
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "HP2", fit = 90:110, extrapolate = 80:120, fadeIn = 90:100) %>%
+    mT.setDimInfo(type = "Extrapolation: HP2, Fit 90--110"),
+  
+  title = "Examples of different fitting ranges for extrapolation")  +
+  aes(colour = type)
+
+## ----AustrianPopulationTableFitFunctionComparison-----------------------------
+plotMortalityTables(
+  PopulationTable.AT2017, 
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "HP2", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>%
+    mT.setDimInfo(type = "HP2"),
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "thiele", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>%
+    mT.setDimInfo(type = "thiele"),
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "ggompertz", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>%
+    mT.setDimInfo(type = "ggompertz"),
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "carriere1", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>%
+    mT.setDimInfo(type = "carriere1"),
+
+  title = "Examples of different fitting functions for extrapolation (fit 75--99)", 
+  ages = 75:120, legend.position = "bottom", legend.key.width = unit(15, "mm"))  +
+  aes(colour = type) + labs(colour = "Mortality Law")
+
+## ----AustrianPopulationTableTrendForecast-------------------------------------
+mortalityTables.load("Austria_PopulationForecast")
+plotMortalityTrend(mort.AT.forecast, title = "Forecast trend (medium scenario) by Statistik Austria")
+
+## ----AustrianPopulationTableTrend---------------------------------------------
+PopulationTable.AT2017.trend = PopulationTable.AT2017.ex %>%
+  mT.addTrend(mort.AT.forecast$m@trend, trendages = ages(mort.AT.forecast$m)) %>%
+  mT.setDimInfo(type = "smoothed, extrapolated, trend")
+
+PopulationTable.AT2017.trend.ex = PopulationTable.AT2017.trend %>%
+  mT.extrapolateTrendExp(95) %>%
+  mT.setDimInfo(type = "smoothed, extrapolated, trend extrapolated")
+
+plotMortalityTrend(PopulationTable.AT2017.trend, PopulationTable.AT2017.trend.ex,
+                   title = "Extrapolating the trend via Exponential function") +
+  aes(color = type)
+
+
+
+plotMortalityTables(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, PopulationTable.AT2017.trend.ex, YOB = 1980, title = "Austrian population mortality (Period 2017 vs. Generation 1980)", legend.position = c(0.01, 0.99), legend.justification = c(0,1))  +
+  aes(colour = type)
+
+
+## ----AustrianPopulationTableFinal---------------------------------------------
+# Lots of non-essential or support information is stored inside the table's data field:
+PopulationTable.AT2017.trend.ex@data$whittaker
+
+# Clean up the table (remove all non-essential data, but do not modify results)
+PopulationTable.AT2017.Cohort.FINAL = PopulationTable.AT2017.trend.ex %>%
+  mT.cleanup() %>%
+  mT.round(digits = 6) %>%
+  mT.setName("Austrian Population Mortality, Period 2017 with trend projection")
+
+
+## ----AustrianPopulationTableScaled--------------------------------------------
+TableForProduct = PopulationTable.AT2017.Cohort.FINAL %>%
+  mT.scaleProbs(factor = 1.25, name.postfix = "10% security added")
+
+plotMortalityTables(TableForProduct, PopulationTable.AT2017.Cohort.FINAL, 
+                    title = "Adding a security loading of 25%", Period = 2017, legend.position = "bottom")
+
diff --git a/vignettes/using-the-mortalityTables-package.Rmd b/vignettes/using-the-mortalityTables-package.Rmd
index 6648b3c..0bafc81 100644
--- a/vignettes/using-the-mortalityTables-package.Rmd
+++ b/vignettes/using-the-mortalityTables-package.Rmd
@@ -16,6 +16,7 @@ vignette: >
 
 ```{r echo = FALSE}
 knitr::opts_chunk$set(collapse = TRUE, comment = "#>")
+options(tidyverse.quiet = TRUE)
 ```
 
 The MortalityTables package provides the `mortalityTable` base class and
@@ -416,8 +417,240 @@ plot(AVOe2005R.female, AVOe2005R.female.mod, title = "Original and modified tabl
 ## Creating mortality tables from data and modifying them using various helper functions
 
 The package \code{MortalityTables} not only provides the data structures and some
-examples of mortality tables, it also provides several functions to modify
-existing tables. In particular, the functions available provide 
+examples of mortality tables, it also provides several functions to create mortality
+tables from raw data and modify them. The package provides several editing functions,
+which all begin with the prefix \code{mT.}.
+
+Let us take as an example the provided dataset \code{PopulationData.AT2017} of 
+Austrian population data (exposure and deaths counts for the year 2017). 
+
+For simplicity, we only look at the unisex data (i.e. male + female numbers, 
+which are already provided as total exposure and total deaths). The raw mortality
+can then be calculated as 
+\equation{\hat{q}_x = \frac{d_x}{E_x+\frac{d_x}{2}}}
+
+```{r AustrianPopulation.RawData}
+library(tidyverse)
+data("PopulationData.AT2017", package = "MortalityTables")
+PopulationData.AT2017.raw = PopulationData.AT2017 %>%
+  select(age, exposure.total, deaths.total) %>%
+  mutate(qraw = deaths.total / (exposure.total + deaths.total/2))
+```
+
+We now have all data needed to put it into a [MortalityTable] object (some fields 
+like the exposre and the data list are not strictly needed, but can be useful 
+later on):
+
+
+```{r AustrianPopulationTableRaw}
+PopulationTable.AT2017 = mortalityTable.period(
+  name = "Austrian Population Mortality 2017 (raw)", 
+  baseYear = 2017,
+  deathProbs = PopulationData.AT2017.raw$qraw,
+  ages = PopulationData.AT2017.raw$age,
+  exposures = PopulationData.AT2017.raw$exposure.total,
+  data = list(
+    deaths = PopulationData.AT2017.raw$deaths.total,
+    dim = list(sex = "u", collar = "Population", type = "raw", year = "2017")
+  )
+)
+plotMortalityTables(PopulationTable.AT2017, title = "Austrian population mortality (raw), 2017")
+```
+
+
+
+Of course, we sooner or later want to work with a smooth table rather than the 
+raw death probabilities. The most common approach to smoothing mortality tables
+is the Whittaker-Henderson method of graduation, which is provided by the 
+function [whittaker.mortalityTable()]. The parameters are the $\ĺambda$ smoothing
+parameter (determining how smooth the result shall be, which in turn means that 
+the result might be quite distant from the raw probabiliteis in some ages) and 
+the order of differences $d$ (the default 2 typically suffices). Since we have
+the exposures available and stored inside the table, the [whittaker.mortalityTable()] 
+function will use the exposures as weight and so try to match age ranges with 
+high exposure much better than e.g. old ages with hardly any living.
+
+```{r AustrianPopulationTableSmooth}
+PopulationTable.AT2017.smooth = PopulationTable.AT2017 %>%
+  whittaker.mortalityTable(lambda = 1/10, d = 2, name.postfix = ", Whittaker") %>%
+  mT.setDimInfo(type = "smoothed")
+plotMortalityTables(PopulationTable.AT2017, PopulationTable.AT2017.smooth, title = "Austrian population mortality (raw and smoothed), 2017")  +
+  aes(colour = type)
+```
+As a side note, this example also shows how the additional dimensional infos
+set be either the constructor of the table or the [mT.setDimInfo()] function and
+stored in the \code{table$data$dim} list can be used by ggplot as aesthetics.
+
+
+Now, if we look at the exposures, we see that above age 95 we are below an 
+exposure of 5000 and at age 100 we are below exposure 500. So, for these old 
+ages we apparently do not have enough data to derive mortalities with sufficient 
+significance. So, let's cut the table at age 100:
+
+```{r AustrianPopulationTableCut100}
+PopulationData.AT2017.raw %>% filter(age > 90)
+PopulationTable.AT2017.cut = PopulationTable.AT2017.smooth %>%
+  mT.fillAges(0:99) %>%
+  mT.setName("Austrian Population Mortality 2017, Whittaker-smoothed and cut at age 99")
+```
+
+
+Even though we don't have enough statistical data to derive significant mortalities
+above 100, we still want to create a table that covers this age range by extrapolating
+the significant table to higher ages. This is typically done by selecting a fitting
+function and an appropriate age range, where the function is fit to the data. 
+The parameters of the function calibrated to match the mortalities in the fitting 
+range as good as possible are then used to extrapolate the mortalities with the
+function to ages outside the existing table. 
+
+The function [mT.fitExtrapolationLaw] uses the package \code{MortalityLaws} and 
+the function [MortalityLaws::MortalityLaw()] to fit one of the mortality laws (
+see [MortalityLaws::availableLaws()] for all available laws) to the data and use
+that law to extrapolate to the desired ages, with a potential feding-in or fading-out
+age range.
+
+In this example, we fit a Heligman-Pollard-type law (HP2) to the raw data and use
+it to extrapolate up to age 120. The age rante 80--95 is used to linearly 
+switch from the (smoothed) death probabilities of the input table to the 
+death probabilities calculated from the fitted law. So in this case, all observed 
+probabilities above age 95 are not used at all anyway.
+
+```{r AustrianPopulationTableExtrapolated}
+PopulationTable.AT2017.ex = PopulationTable.AT2017.smooth %>%
+  mT.fitExtrapolationLaw(law = "HP2", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>%
+  mT.setDimInfo(type = "smoothed and extrapolated")
+plotMortalityTables(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, title = "Austrian population mortality (raw and smoothed), 2017")  +
+  aes(colour = type)
+```
+
+Using different laws and different fitting age ranges can result in quite different 
+results, so be carefull when extrapolating the table and always do a sanity-check
+on the results!
+
+```{r AustrianPopulationTableFitComparison}
+plotMortalityTables(
+  PopulationTable.AT2017, 
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "HP2", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>%
+    mT.setDimInfo(type = "Extrapolation: HP2, Fit 75--99"),
+  
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "HP2", fit = 75:85, extrapolate = 80:120, fadeIn = 80:95) %>%
+    mT.setDimInfo(type = "Extrapolation: HP, Fit 75--85"),
+  
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "HP2", fit = 90:110, extrapolate = 80:120, fadeIn = 90:100) %>%
+    mT.setDimInfo(type = "Extrapolation: HP2, Fit 90--110"),
+  
+  title = "Examples of different fitting ranges for extrapolation")  +
+  aes(colour = type)
+```
+```{r AustrianPopulationTableFitFunctionComparison}
+plotMortalityTables(
+  PopulationTable.AT2017, 
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "HP2", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>%
+    mT.setDimInfo(type = "HP2"),
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "thiele", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>%
+    mT.setDimInfo(type = "thiele"),
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "ggompertz", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>%
+    mT.setDimInfo(type = "ggompertz"),
+  PopulationTable.AT2017.smooth %>%
+    mT.fitExtrapolationLaw(law = "carriere1", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>%
+    mT.setDimInfo(type = "carriere1"),
+
+  title = "Examples of different fitting functions for extrapolation (fit 75--99)", 
+  ages = 75:120, legend.position = "bottom", legend.key.width = unit(15, "mm"))  +
+  aes(colour = type) + labs(colour = "Mortality Law")
+```
+
+
+The Austrian population mortality table for the year 2017 derived above is a 
+period life table describing the observed mortality only in the year 2017.
+To describe death probabilities for a given person, one needs to take into account
+the mortality improvements and project the mortality into the future from the 
+observation year. This can be done with age-dependent yearly mortality improvements, also called
+mortaltity trend $\labmda_x$.
+
+For simplicity, we will use the trend $\labmda_x$ of the medium scenario of the
+mortality forecast of the Statistik Austria (forecast from 2016 to roughly 2080).
+These forecast tables are available as the mortality table \code{mort.AT.forecast}
+for male and female separately. Even though we derived a table for unisex, we 
+will apply the male trends for simplicity. In practice, of course you would 
+derive proper unisex trends from the available data.
+
+```{r AustrianPopulationTableTrendForecast}
+mortalityTables.load("Austria_PopulationForecast")
+plotMortalityTrend(mort.AT.forecast, title = "Forecast trend (medium scenario) by Statistik Austria")
+```
+As we can see, the trends appear to be derived from data until age 94 and then set to a constant value ("floor"). 
+Let us first apply the male trend to the observed period life table of the year 2017, and then extrapolate the trend from age 94 to higher ages by an exponential function towards zero. The first can be done with the function [mT.addTrend()], while the second can be done with [mT.extrapolateTrendExp()]:
+
+```{r AustrianPopulationTableTrend}
+PopulationTable.AT2017.trend = PopulationTable.AT2017.ex %>%
+  mT.addTrend(mort.AT.forecast$m@trend, trendages = ages(mort.AT.forecast$m)) %>%
+  mT.setDimInfo(type = "smoothed, extrapolated, trend")
+
+PopulationTable.AT2017.trend.ex = PopulationTable.AT2017.trend %>%
+  mT.extrapolateTrendExp(95) %>%
+  mT.setDimInfo(type = "smoothed, extrapolated, trend extrapolated")
+
+plotMortalityTrend(PopulationTable.AT2017.trend, PopulationTable.AT2017.trend.ex,
+                   title = "Extrapolating the trend via Exponential function") +
+  aes(color = type)
+
+
+
+plotMortalityTables(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, PopulationTable.AT2017.trend.ex, YOB = 1980, title = "Austrian population mortality (Period 2017 vs. Generation 1980)", legend.position = c(0.01, 0.99), legend.justification = c(0,1))  +
+  aes(colour = type)
+
+```
+
+So we have now started from raw data, calculated the death probabilities, smoothed 
+them using Whittaker-Henderson, extrapolated to very old ages and added a trend 
+to create a nice Cohort Life Table.
+We could now store the \code{PopulationTable.AT2017.trend.ex} in an .RData file
+and distribute it to the public. However, we might miss that all our modification
+were also recorded inside the mortality table (to allow later introspection into 
+what was done and what was the result). For a published table, this might not 
+be desired, so we first need to clean this additional support data with the 
+[mT.cleanup()] function, which does not modify the table itself, but only 
+removes all non-essential supporting information from the table:
+
+```{r AustrianPopulationTableFinal}
+# Lots of non-essential or support information is stored inside the table's data field:
+PopulationTable.AT2017.trend.ex@data$whittaker
+
+# Clean up the table (remove all non-essential data, but do not modify results)
+PopulationTable.AT2017.Cohort.FINAL = PopulationTable.AT2017.trend.ex %>%
+  mT.cleanup() %>%
+  mT.round(digits = 6) %>%
+  mT.setName("Austrian Population Mortality, Period 2017 with trend projection")
+
+```
+
+Other functions that might be useful before publishing a table are:
+* [mT.translate()], which simply moves the base year of the internal representation of a cohort life table to a different year (by applying the trend according to the translation), but leaves cohort death probabilities unchanged. 
+* [mT.round()], which rounds the probabilities of the base table and the trend to the given number of digits.
+
+
+
+When using a population mortality table like the one we just derived in 
+insurance contracts, the actuary often  considers adding a certain security
+loading (e.g. 25\% on all death probabilities) to ensure sufficient security 
+and ensure the legal requirement of a prudent person.
+This can be done with the function [mT.scaleProbs()]:
+
+```{r AustrianPopulationTableScaled}
+TableForProduct = PopulationTable.AT2017.Cohort.FINAL %>%
+  mT.scaleProbs(factor = 1.25, name.postfix = "10% security added")
+
+plotMortalityTables(TableForProduct, PopulationTable.AT2017.Cohort.FINAL, 
+                    title = "Adding a security loading of 25%", Period = 2017, legend.position = "bottom")
+```
+
 
 ## Pension Tables
 Pension tables generalize mortality tables in that the state space is increased 
@@ -431,22 +664,33 @@ Possible states are:
 * incapacity: disablity pension (in most cases permanent), not working, early pension
 * retirement: old age pension, usually starting with a fixed age
 * dead
-  * Widow/widower pension (if a widow exists at the time of death)
+    * Widow/widower pension (if a widow exists at the time of death)
 
 Correspondingly, the `pensionTable` class offers the following slots describing 
 transition probabilities for the corresponding state transitions (by a 
 `mortalityTable`-derived object):
 
-* `qxaa`:  death probability of actives (active -> dead)
-* `ix`:    invalidity probability (active -> incapacity)
-* `qix`:   death probability of invalid (invalid -> dead)
-* `rx`:    reactivation probability (incapacity -> active)
-* `apx`:   retirement probability (active -> retirement), typically 1 for a fixed age
-* `apx`:   retirement probability of invalids (invalid -> retirement), typically 0 or 1 for a fixed age
-* `qpx`:   death probability of retired (retired -> dead)
-* `hx`:    probability of a widow at moment of death (dead -> widow), y(x) age differene
-* `qxw`:   death probability of widows/widowers
-* `qgx`:   death probability of total group (irrespective of state)
+* `qx`
+  : death probability of actives (active -> dead)}
+* `ix`
+  : invalidity probability (active -> incapacity)}
+* `qix`
+  : death probability of invalid (invalid -> dead)}
+* `rx`
+  : reactivation probability (incapacity -> active)}
+
+* `apx`
+  : retirement probability (active -> retirement), typically 1 for a fixed age}
+* `qpx`
+  : death probability of retired (retired -> dead)}
+* `hx`
+  : probability of a widow at moment of death (dead -> widow), y(x) age differene}
+* `qxw`
+  : death probability of widows/widowers}
+* `yx`
+  : age difference of widow(er) at moment of death}
+* `qgx`
+  : death probability of total group (irrespective of state)}
 
 All functions that handle `mortalityTable` object can be used with these slots.
 
diff --git a/vignettes/using-the-mortalityTables-package.html b/vignettes/using-the-mortalityTables-package.html
index 50f83bf..0aced54 100644
--- a/vignettes/using-the-mortalityTables-package.html
+++ b/vignettes/using-the-mortalityTables-package.html
@@ -12,7 +12,7 @@
 
 <meta name="author" content="Reinhold Kainhofer, reinhold@kainhofer.com" />
 
-<meta name="date" content="2020-08-11" />
+<meta name="date" content="2020-08-17" />
 
 <title>Using the MortalityTables Package</title>
 
@@ -319,7 +319,7 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 
 <h1 class="title toc-ignore">Using the MortalityTables Package</h1>
 <h4 class="author">Reinhold Kainhofer, <a href="mailto:reinhold@kainhofer.com" class="email">reinhold@kainhofer.com</a></h4>
-<h4 class="date">2020-08-11</h4>
+<h4 class="date">2020-08-17</h4>
 
 
 <div id="TOC">
@@ -731,7 +731,175 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 </div>
 <div id="creating-mortality-tables-from-data-and-modifying-them-using-various-helper-functions" class="section level2">
 <h2>Creating mortality tables from data and modifying them using various helper functions</h2>
-<p>The package  not only provides the data structures and some examples of mortality tables, it also provides several functions to modify existing tables. In particular, the functions available provide</p>
+<p>The package  not only provides the data structures and some examples of mortality tables, it also provides several functions to create mortality tables from raw data and modify them. The package provides several editing functions, which all begin with the prefix .</p>
+<p>Let us take as an example the provided dataset  of Austrian population data (exposure and deaths counts for the year 2017).</p>
+<p>For simplicity, we only look at the unisex data (i.e. male + female numbers, which are already provided as total exposure and total deaths). The raw mortality can then be calculated as </p>
+<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1"></a><span class="kw">library</span>(tidyverse)</span>
+<span id="cb18-2"><a href="#cb18-2"></a><span class="kw">data</span>(<span class="st">&quot;PopulationData.AT2017&quot;</span>, <span class="dt">package =</span> <span class="st">&quot;MortalityTables&quot;</span>)</span>
+<span id="cb18-3"><a href="#cb18-3"></a>PopulationData.AT2017.raw =<span class="st"> </span>PopulationData.AT2017 <span class="op">%&gt;%</span></span>
+<span id="cb18-4"><a href="#cb18-4"></a><span class="st">  </span><span class="kw">select</span>(age, exposure.total, deaths.total) <span class="op">%&gt;%</span></span>
+<span id="cb18-5"><a href="#cb18-5"></a><span class="st">  </span><span class="kw">mutate</span>(<span class="dt">qraw =</span> deaths.total <span class="op">/</span><span class="st"> </span>(exposure.total <span class="op">+</span><span class="st"> </span>deaths.total<span class="op">/</span><span class="dv">2</span>))</span></code></pre></div>
+<p>We now have all data needed to put it into a [MortalityTable] object (some fields like the exposre and the data list are not strictly needed, but can be useful later on):</p>
+<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1"></a>PopulationTable.AT2017 =<span class="st"> </span><span class="kw">mortalityTable.period</span>(</span>
+<span id="cb19-2"><a href="#cb19-2"></a>  <span class="dt">name =</span> <span class="st">&quot;Austrian Population Mortality 2017 (raw)&quot;</span>, </span>
+<span id="cb19-3"><a href="#cb19-3"></a>  <span class="dt">baseYear =</span> <span class="dv">2017</span>,</span>
+<span id="cb19-4"><a href="#cb19-4"></a>  <span class="dt">deathProbs =</span> PopulationData.AT2017.raw<span class="op">$</span>qraw,</span>
+<span id="cb19-5"><a href="#cb19-5"></a>  <span class="dt">ages =</span> PopulationData.AT2017.raw<span class="op">$</span>age,</span>
+<span id="cb19-6"><a href="#cb19-6"></a>  <span class="dt">exposures =</span> PopulationData.AT2017.raw<span class="op">$</span>exposure.total,</span>
+<span id="cb19-7"><a href="#cb19-7"></a>  <span class="dt">data =</span> <span class="kw">list</span>(</span>
+<span id="cb19-8"><a href="#cb19-8"></a>    <span class="dt">deaths =</span> PopulationData.AT2017.raw<span class="op">$</span>deaths.total,</span>
+<span id="cb19-9"><a href="#cb19-9"></a>    <span class="dt">dim =</span> <span class="kw">list</span>(<span class="dt">sex =</span> <span class="st">&quot;u&quot;</span>, <span class="dt">collar =</span> <span class="st">&quot;Population&quot;</span>, <span class="dt">type =</span> <span class="st">&quot;raw&quot;</span>, <span class="dt">year =</span> <span class="st">&quot;2017&quot;</span>)</span>
+<span id="cb19-10"><a href="#cb19-10"></a>  )</span>
+<span id="cb19-11"><a href="#cb19-11"></a>)</span>
+<span id="cb19-12"><a href="#cb19-12"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (raw), 2017&quot;</span>)</span></code></pre></div>
+<p><img src="" /><!-- --></p>
+<p>Of course, we sooner or later want to work with a smooth table rather than the raw death probabilities. The most common approach to smoothing mortality tables is the Whittaker-Henderson method of graduation, which is provided by the function [whittaker.mortalityTable()]. The parameters are the <span class="math inline">\(\ĺambda\)</span> smoothing parameter (determining how smooth the result shall be, which in turn means that the result might be quite distant from the raw probabiliteis in some ages) and the order of differences <span class="math inline">\(d\)</span> (the default 2 typically suffices). Since we have the exposures available and stored inside the table, the [whittaker.mortalityTable()] function will use the exposures as weight and so try to match age ranges with high exposure much better than e.g. old ages with hardly any living.</p>
+<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1"></a>PopulationTable.AT2017.smooth =<span class="st"> </span>PopulationTable.AT2017 <span class="op">%&gt;%</span></span>
+<span id="cb20-2"><a href="#cb20-2"></a><span class="st">  </span><span class="kw">whittaker.mortalityTable</span>(<span class="dt">lambda =</span> <span class="dv">1</span><span class="op">/</span><span class="dv">10</span>, <span class="dt">d =</span> <span class="dv">2</span>, <span class="dt">name.postfix =</span> <span class="st">&quot;, Whittaker&quot;</span>) <span class="op">%&gt;%</span></span>
+<span id="cb20-3"><a href="#cb20-3"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed&quot;</span>)</span>
+<span id="cb20-4"><a href="#cb20-4"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (raw and smoothed), 2017&quot;</span>)  <span class="op">+</span></span>
+<span id="cb20-5"><a href="#cb20-5"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
+<p><img src="" /><!-- --> As a side note, this example also shows how the additional dimensional infos set be either the constructor of the table or the [mT.setDimInfo()] function and stored in the  list can be used by ggplot as aesthetics.</p>
+<p>Now, if we look at the exposures, we see that above age 95 we are below an exposure of 5000 and at age 100 we are below exposure 500. So, for these old ages we apparently do not have enough data to derive mortalities with sufficient significance. So, let’s cut the table at age 100:</p>
+<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1"></a>PopulationData.AT2017.raw <span class="op">%&gt;%</span><span class="st"> </span><span class="kw">filter</span>(age <span class="op">&gt;</span><span class="st"> </span><span class="dv">90</span>)</span>
+<span id="cb21-2"><a href="#cb21-2"></a><span class="co">#&gt; # A tibble: 20 x 4</span></span>
+<span id="cb21-3"><a href="#cb21-3"></a><span class="co">#&gt;      age exposure.total deaths.total  qraw</span></span>
+<span id="cb21-4"><a href="#cb21-4"></a><span class="co">#&gt;    &lt;dbl&gt;          &lt;dbl&gt;        &lt;dbl&gt; &lt;dbl&gt;</span></span>
+<span id="cb21-5"><a href="#cb21-5"></a><span class="co">#&gt;  1    91       15616.           2963 0.173</span></span>
+<span id="cb21-6"><a href="#cb21-6"></a><span class="co">#&gt;  2    92       12870.           2721 0.191</span></span>
+<span id="cb21-7"><a href="#cb21-7"></a><span class="co">#&gt;  3    93       10245.           2451 0.214</span></span>
+<span id="cb21-8"><a href="#cb21-8"></a><span class="co">#&gt;  4    94        8024.           2113 0.233</span></span>
+<span id="cb21-9"><a href="#cb21-9"></a><span class="co">#&gt;  5    95        5875.           1727 0.256</span></span>
+<span id="cb21-10"><a href="#cb21-10"></a><span class="co">#&gt;  6    96        4041.           1382 0.292</span></span>
+<span id="cb21-11"><a href="#cb21-11"></a><span class="co">#&gt;  7    97        2480.            885 0.303</span></span>
+<span id="cb21-12"><a href="#cb21-12"></a><span class="co">#&gt;  8    98        1139.            433 0.320</span></span>
+<span id="cb21-13"><a href="#cb21-13"></a><span class="co">#&gt;  9    99         591.            237 0.334</span></span>
+<span id="cb21-14"><a href="#cb21-14"></a><span class="co">#&gt; 10   100         405.            182 0.367</span></span>
+<span id="cb21-15"><a href="#cb21-15"></a><span class="co">#&gt; 11   101         259.            116 0.366</span></span>
+<span id="cb21-16"><a href="#cb21-16"></a><span class="co">#&gt; 12   102         208.             98 0.382</span></span>
+<span id="cb21-17"><a href="#cb21-17"></a><span class="co">#&gt; 13   103         132.             82 0.473</span></span>
+<span id="cb21-18"><a href="#cb21-18"></a><span class="co">#&gt; 14   104          70.8            42 0.458</span></span>
+<span id="cb21-19"><a href="#cb21-19"></a><span class="co">#&gt; 15   105          37.7            26 0.513</span></span>
+<span id="cb21-20"><a href="#cb21-20"></a><span class="co">#&gt; 16   106          16.9            14 0.586</span></span>
+<span id="cb21-21"><a href="#cb21-21"></a><span class="co">#&gt; 17   107           6.98            2 0.251</span></span>
+<span id="cb21-22"><a href="#cb21-22"></a><span class="co">#&gt; 18   108           3.37            3 0.616</span></span>
+<span id="cb21-23"><a href="#cb21-23"></a><span class="co">#&gt; 19   109           0.8             0 0    </span></span>
+<span id="cb21-24"><a href="#cb21-24"></a><span class="co">#&gt; 20   110           0.17            1 1.49</span></span>
+<span id="cb21-25"><a href="#cb21-25"></a>PopulationTable.AT2017.cut =<span class="st"> </span>PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb21-26"><a href="#cb21-26"></a><span class="st">  </span><span class="kw">mT.fillAges</span>(<span class="dv">0</span><span class="op">:</span><span class="dv">99</span>) <span class="op">%&gt;%</span></span>
+<span id="cb21-27"><a href="#cb21-27"></a><span class="st">  </span><span class="kw">mT.setName</span>(<span class="st">&quot;Austrian Population Mortality 2017, Whittaker-smoothed and cut at age 99&quot;</span>)</span></code></pre></div>
+<p>Even though we don’t have enough statistical data to derive significant mortalities above 100, we still want to create a table that covers this age range by extrapolating the significant table to higher ages. This is typically done by selecting a fitting function and an appropriate age range, where the function is fit to the data. The parameters of the function calibrated to match the mortalities in the fitting range as good as possible are then used to extrapolate the mortalities with the function to ages outside the existing table.</p>
+<p>The function [mT.fitExtrapolationLaw] uses the package  and the function [MortalityLaws::MortalityLaw()] to fit one of the mortality laws ( see [MortalityLaws::availableLaws()] for all available laws) to the data and use that law to extrapolate to the desired ages, with a potential feding-in or fading-out age range.</p>
+<p>In this example, we fit a Heligman-Pollard-type law (HP2) to the raw data and use it to extrapolate up to age 120. The age rante 80–95 is used to linearly switch from the (smoothed) death probabilities of the input table to the death probabilities calculated from the fitted law. So in this case, all observed probabilities above age 95 are not used at all anyway.</p>
+<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1"></a>PopulationTable.AT2017.ex =<span class="st"> </span>PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb22-2"><a href="#cb22-2"></a><span class="st">  </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb22-3"><a href="#cb22-3"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed and extrapolated&quot;</span>)</span>
+<span id="cb22-4"><a href="#cb22-4"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (raw and smoothed), 2017&quot;</span>)  <span class="op">+</span></span>
+<span id="cb22-5"><a href="#cb22-5"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
+<p><img src="" /><!-- --></p>
+<p>Using different laws and different fitting age ranges can result in quite different results, so be carefull when extrapolating the table and always do a sanity-check on the results!</p>
+<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1"></a><span class="kw">plotMortalityTables</span>(</span>
+<span id="cb23-2"><a href="#cb23-2"></a>  PopulationTable.AT2017, </span>
+<span id="cb23-3"><a href="#cb23-3"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb23-4"><a href="#cb23-4"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb23-5"><a href="#cb23-5"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;Extrapolation: HP2, Fit 75--99&quot;</span>),</span>
+<span id="cb23-6"><a href="#cb23-6"></a>  </span>
+<span id="cb23-7"><a href="#cb23-7"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb23-8"><a href="#cb23-8"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">85</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb23-9"><a href="#cb23-9"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;Extrapolation: HP, Fit 75--85&quot;</span>),</span>
+<span id="cb23-10"><a href="#cb23-10"></a>  </span>
+<span id="cb23-11"><a href="#cb23-11"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb23-12"><a href="#cb23-12"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">90</span><span class="op">:</span><span class="dv">110</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">90</span><span class="op">:</span><span class="dv">100</span>) <span class="op">%&gt;%</span></span>
+<span id="cb23-13"><a href="#cb23-13"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;Extrapolation: HP2, Fit 90--110&quot;</span>),</span>
+<span id="cb23-14"><a href="#cb23-14"></a>  </span>
+<span id="cb23-15"><a href="#cb23-15"></a>  <span class="dt">title =</span> <span class="st">&quot;Examples of different fitting ranges for extrapolation&quot;</span>)  <span class="op">+</span></span>
+<span id="cb23-16"><a href="#cb23-16"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
+<p><img src="" /><!-- --></p>
+<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1"></a><span class="kw">plotMortalityTables</span>(</span>
+<span id="cb24-2"><a href="#cb24-2"></a>  PopulationTable.AT2017, </span>
+<span id="cb24-3"><a href="#cb24-3"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb24-4"><a href="#cb24-4"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb24-5"><a href="#cb24-5"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;HP2&quot;</span>),</span>
+<span id="cb24-6"><a href="#cb24-6"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb24-7"><a href="#cb24-7"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;thiele&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb24-8"><a href="#cb24-8"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;thiele&quot;</span>),</span>
+<span id="cb24-9"><a href="#cb24-9"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb24-10"><a href="#cb24-10"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;ggompertz&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb24-11"><a href="#cb24-11"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;ggompertz&quot;</span>),</span>
+<span id="cb24-12"><a href="#cb24-12"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb24-13"><a href="#cb24-13"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;carriere1&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb24-14"><a href="#cb24-14"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;carriere1&quot;</span>),</span>
+<span id="cb24-15"><a href="#cb24-15"></a></span>
+<span id="cb24-16"><a href="#cb24-16"></a>  <span class="dt">title =</span> <span class="st">&quot;Examples of different fitting functions for extrapolation (fit 75--99)&quot;</span>, </span>
+<span id="cb24-17"><a href="#cb24-17"></a>  <span class="dt">ages =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">legend.position =</span> <span class="st">&quot;bottom&quot;</span>, <span class="dt">legend.key.width =</span> <span class="kw">unit</span>(<span class="dv">15</span>, <span class="st">&quot;mm&quot;</span>))  <span class="op">+</span></span>
+<span id="cb24-18"><a href="#cb24-18"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type) <span class="op">+</span><span class="st"> </span><span class="kw">labs</span>(<span class="dt">colour =</span> <span class="st">&quot;Mortality Law&quot;</span>)</span></code></pre></div>
+<p><img src="" /><!-- --></p>
+<p>The Austrian population mortality table for the year 2017 derived above is a period life table describing the observed mortality only in the year 2017. To describe death probabilities for a given person, one needs to take into account the mortality improvements and project the mortality into the future from the observation year. This can be done with age-dependent yearly mortality improvements, also called mortaltity trend <span class="math inline">\(\labmda_x\)</span>.</p>
+<p>For simplicity, we will use the trend <span class="math inline">\(\labmda_x\)</span> of the medium scenario of the mortality forecast of the Statistik Austria (forecast from 2016 to roughly 2080). These forecast tables are available as the mortality table  for male and female separately. Even though we derived a table for unisex, we will apply the male trends for simplicity. In practice, of course you would derive proper unisex trends from the available data.</p>
+<div class="sourceCode" id="cb25"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1"></a><span class="kw">mortalityTables.load</span>(<span class="st">&quot;Austria_PopulationForecast&quot;</span>)</span>
+<span id="cb25-2"><a href="#cb25-2"></a><span class="co">#&gt; Loading table dataset &#39;Austria_PopulationForecast&#39;</span></span>
+<span id="cb25-3"><a href="#cb25-3"></a><span class="kw">plotMortalityTrend</span>(mort.AT.forecast, <span class="dt">title =</span> <span class="st">&quot;Forecast trend (medium scenario) by Statistik Austria&quot;</span>)</span></code></pre></div>
+<p><img src="" /><!-- --> As we can see, the trends appear to be derived from data until age 94 and then set to a constant value (“floor”). Let us first apply the male trend to the observed period life table of the year 2017, and then extrapolate the trend from age 94 to higher ages by an exponential function towards zero. The first can be done with the function [mT.addTrend()], while the second can be done with [mT.extrapolateTrendExp()]:</p>
+<div class="sourceCode" id="cb26"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1"></a>PopulationTable.AT2017.trend =<span class="st"> </span>PopulationTable.AT2017.ex <span class="op">%&gt;%</span></span>
+<span id="cb26-2"><a href="#cb26-2"></a><span class="st">  </span><span class="kw">mT.addTrend</span>(mort.AT.forecast<span class="op">$</span>m<span class="op">@</span>trend, <span class="dt">trendages =</span> <span class="kw">ages</span>(mort.AT.forecast<span class="op">$</span>m)) <span class="op">%&gt;%</span></span>
+<span id="cb26-3"><a href="#cb26-3"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed, extrapolated, trend&quot;</span>)</span>
+<span id="cb26-4"><a href="#cb26-4"></a></span>
+<span id="cb26-5"><a href="#cb26-5"></a>PopulationTable.AT2017.trend.ex =<span class="st"> </span>PopulationTable.AT2017.trend <span class="op">%&gt;%</span></span>
+<span id="cb26-6"><a href="#cb26-6"></a><span class="st">  </span><span class="kw">mT.extrapolateTrendExp</span>(<span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb26-7"><a href="#cb26-7"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed, extrapolated, trend extrapolated&quot;</span>)</span>
+<span id="cb26-8"><a href="#cb26-8"></a></span>
+<span id="cb26-9"><a href="#cb26-9"></a><span class="kw">plotMortalityTrend</span>(PopulationTable.AT2017.trend, PopulationTable.AT2017.trend.ex,</span>
+<span id="cb26-10"><a href="#cb26-10"></a>                   <span class="dt">title =</span> <span class="st">&quot;Extrapolating the trend via Exponential function&quot;</span>) <span class="op">+</span></span>
+<span id="cb26-11"><a href="#cb26-11"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">color =</span> type)</span>
+<span id="cb26-12"><a href="#cb26-12"></a><span class="co">#&gt; Warning: Removed 20 row(s) containing missing values (geom_path).</span></span></code></pre></div>
+<p><img src="" /><!-- --></p>
+<div class="sourceCode" id="cb27"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1"></a></span>
+<span id="cb27-2"><a href="#cb27-2"></a></span>
+<span id="cb27-3"><a href="#cb27-3"></a></span>
+<span id="cb27-4"><a href="#cb27-4"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, PopulationTable.AT2017.trend.ex, <span class="dt">YOB =</span> <span class="dv">1980</span>, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (Period 2017 vs. Generation 1980)&quot;</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.01</span>, <span class="fl">0.99</span>), <span class="dt">legend.justification =</span> <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">1</span>))  <span class="op">+</span></span>
+<span id="cb27-5"><a href="#cb27-5"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
+<p><img src="" /><!-- --></p>
+<p>So we have now started from raw data, calculated the death probabilities, smoothed them using Whittaker-Henderson, extrapolated to very old ages and added a trend to create a nice Cohort Life Table. We could now store the  in an .RData file and distribute it to the public. However, we might miss that all our modification were also recorded inside the mortality table (to allow later introspection into what was done and what was the result). For a published table, this might not be desired, so we first need to clean this additional support data with the [mT.cleanup()] function, which does not modify the table itself, but only removes all non-essential supporting information from the table:</p>
+<div class="sourceCode" id="cb28"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1"></a><span class="co"># Lots of non-essential or support information is stored inside the table&#39;s data field:</span></span>
+<span id="cb28-2"><a href="#cb28-2"></a>PopulationTable.AT2017.trend.ex<span class="op">@</span>data<span class="op">$</span>whittaker</span>
+<span id="cb28-3"><a href="#cb28-3"></a><span class="co">#&gt; $weights</span></span>
+<span id="cb28-4"><a href="#cb28-4"></a><span class="co">#&gt;   [1] 9.902640e-03 9.906213e-03 9.790593e-03 9.633836e-03 9.526789e-03</span></span>
+<span id="cb28-5"><a href="#cb28-5"></a><span class="co">#&gt;   [6] 9.507835e-03 9.578069e-03 9.441193e-03 9.378177e-03 9.433871e-03</span></span>
+<span id="cb28-6"><a href="#cb28-6"></a><span class="co">#&gt;  [11] 9.457978e-03 9.565714e-03 9.682226e-03 9.623760e-03 9.729914e-03</span></span>
+<span id="cb28-7"><a href="#cb28-7"></a><span class="co">#&gt;  [16] 9.716248e-03 9.834353e-03 1.011500e-02 1.041901e-02 1.099756e-02</span></span>
+<span id="cb28-8"><a href="#cb28-8"></a><span class="co">#&gt;  [21] 1.181051e-02 1.201924e-02 1.235036e-02 1.289431e-02 1.336379e-02</span></span>
+<span id="cb28-9"><a href="#cb28-9"></a><span class="co">#&gt;  [26] 1.359387e-02 1.372999e-02 1.362733e-02 1.371012e-02 1.366066e-02</span></span>
+<span id="cb28-10"><a href="#cb28-10"></a><span class="co">#&gt;  [31] 1.345438e-02 1.351974e-02 1.364485e-02 1.359768e-02 1.379285e-02</span></span>
+<span id="cb28-11"><a href="#cb28-11"></a><span class="co">#&gt;  [36] 1.393752e-02 1.375612e-02 1.301095e-02 1.271099e-02 1.250115e-02</span></span>
+<span id="cb28-12"><a href="#cb28-12"></a><span class="co">#&gt;  [41] 1.247615e-02 1.276387e-02 1.328318e-02 1.331546e-02 1.369437e-02</span></span>
+<span id="cb28-13"><a href="#cb28-13"></a><span class="co">#&gt;  [46] 1.431341e-02 1.474252e-02 1.535602e-02 1.610024e-02 1.627307e-02</span></span>
+<span id="cb28-14"><a href="#cb28-14"></a><span class="co">#&gt;  [51] 1.624561e-02 1.614926e-02 1.640552e-02 1.622923e-02 1.614036e-02</span></span>
+<span id="cb28-15"><a href="#cb28-15"></a><span class="co">#&gt;  [56] 1.559669e-02 1.497483e-02 1.440294e-02 1.380555e-02 1.326929e-02</span></span>
+<span id="cb28-16"><a href="#cb28-16"></a><span class="co">#&gt;  [61] 1.297614e-02 1.235557e-02 1.150436e-02 1.096556e-02 1.067262e-02</span></span>
+<span id="cb28-17"><a href="#cb28-17"></a><span class="co">#&gt;  [66] 1.024972e-02 1.007565e-02 1.007801e-02 1.041158e-02 1.033101e-02</span></span>
+<span id="cb28-18"><a href="#cb28-18"></a><span class="co">#&gt;  [71] 9.974142e-03 7.170591e-03 8.164682e-03 8.929619e-03 8.506759e-03</span></span>
+<span id="cb28-19"><a href="#cb28-19"></a><span class="co">#&gt;  [76] 9.195433e-03 9.656996e-03 1.012315e-02 7.949747e-03 5.845014e-03</span></span>
+<span id="cb28-20"><a href="#cb28-20"></a><span class="co">#&gt;  [81] 5.360872e-03 5.043744e-03 4.724615e-03 4.477298e-03 4.308243e-03</span></span>
+<span id="cb28-21"><a href="#cb28-21"></a><span class="co">#&gt;  [86] 3.996696e-03 3.728356e-03 3.335648e-03 2.879870e-03 2.421901e-03</span></span>
+<span id="cb28-22"><a href="#cb28-22"></a><span class="co">#&gt;  [91] 2.071341e-03 1.775088e-03 1.462955e-03 1.164619e-03 9.120986e-04</span></span>
+<span id="cb28-23"><a href="#cb28-23"></a><span class="co">#&gt;  [96] 6.678433e-04 4.593908e-04 2.819566e-04 1.294273e-04 6.713604e-05</span></span>
+<span id="cb28-24"><a href="#cb28-24"></a><span class="co">#&gt; [101] 4.608583e-05 2.945073e-05 2.359083e-05 1.503001e-05 8.048140e-06</span></span>
+<span id="cb28-25"><a href="#cb28-25"></a><span class="co">#&gt; [106] 4.288931e-06 1.918822e-06 7.934465e-07 3.830824e-07 0.000000e+00</span></span>
+<span id="cb28-26"><a href="#cb28-26"></a><span class="co">#&gt; [111] 1.932463e-08</span></span>
+<span id="cb28-27"><a href="#cb28-27"></a></span>
+<span id="cb28-28"><a href="#cb28-28"></a><span class="co"># Clean up the table (remove all non-essential data, but do not modify results)</span></span>
+<span id="cb28-29"><a href="#cb28-29"></a>PopulationTable.AT2017.Cohort.FINAL =<span class="st"> </span>PopulationTable.AT2017.trend.ex <span class="op">%&gt;%</span></span>
+<span id="cb28-30"><a href="#cb28-30"></a><span class="st">  </span><span class="kw">mT.cleanup</span>() <span class="op">%&gt;%</span></span>
+<span id="cb28-31"><a href="#cb28-31"></a><span class="st">  </span><span class="kw">mT.round</span>(<span class="dt">digits =</span> <span class="dv">6</span>) <span class="op">%&gt;%</span></span>
+<span id="cb28-32"><a href="#cb28-32"></a><span class="st">  </span><span class="kw">mT.setName</span>(<span class="st">&quot;Austrian Population Mortality, Period 2017 with trend projection&quot;</span>)</span></code></pre></div>
+<p>Other functions that might be useful before publishing a table are: * [mT.translate()], which simply moves the base year of the internal representation of a cohort life table to a different year (by applying the trend according to the translation), but leaves cohort death probabilities unchanged. * [mT.round()], which rounds the probabilities of the base table and the trend to the given number of digits.</p>
+<p>When using a population mortality table like the one we just derived in insurance contracts, the actuary often considers adding a certain security loading (e.g. 25% on all death probabilities) to ensure sufficient security and ensure the legal requirement of a prudent person. This can be done with the function [mT.scaleProbs()]:</p>
+<div class="sourceCode" id="cb29"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1"></a>TableForProduct =<span class="st"> </span>PopulationTable.AT2017.Cohort.FINAL <span class="op">%&gt;%</span></span>
+<span id="cb29-2"><a href="#cb29-2"></a><span class="st">  </span><span class="kw">mT.scaleProbs</span>(<span class="dt">factor =</span> <span class="fl">1.25</span>, <span class="dt">name.postfix =</span> <span class="st">&quot;10% security added&quot;</span>)</span>
+<span id="cb29-3"><a href="#cb29-3"></a></span>
+<span id="cb29-4"><a href="#cb29-4"></a><span class="kw">plotMortalityTables</span>(TableForProduct, PopulationTable.AT2017.Cohort.FINAL, </span>
+<span id="cb29-5"><a href="#cb29-5"></a>                    <span class="dt">title =</span> <span class="st">&quot;Adding a security loading of 25%&quot;</span>, <span class="dt">Period =</span> <span class="dv">2017</span>, <span class="dt">legend.position =</span> <span class="st">&quot;bottom&quot;</span>)</span></code></pre></div>
+<p><img src="" /><!-- --></p>
 </div>
 <div id="pension-tables" class="section level2">
 <h2>Pension Tables</h2>
@@ -748,16 +916,56 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 </ul>
 <p>Correspondingly, the <code>pensionTable</code> class offers the following slots describing transition probabilities for the corresponding state transitions (by a <code>mortalityTable</code>-derived object):</p>
 <ul>
-<li><code>qxaa</code>: death probability of actives (active -&gt; dead)</li>
-<li><code>ix</code>: invalidity probability (active -&gt; incapacity)</li>
-<li><code>qix</code>: death probability of invalid (invalid -&gt; dead)</li>
-<li><code>rx</code>: reactivation probability (incapacity -&gt; active)</li>
-<li><code>apx</code>: retirement probability (active -&gt; retirement), typically 1 for a fixed age</li>
-<li><code>apx</code>: retirement probability of invalids (invalid -&gt; retirement), typically 0 or 1 for a fixed age</li>
-<li><code>qpx</code>: death probability of retired (retired -&gt; dead)</li>
-<li><code>hx</code>: probability of a widow at moment of death (dead -&gt; widow), y(x) age differene</li>
-<li><code>qxw</code>: death probability of widows/widowers</li>
-<li><code>qgx</code>: death probability of total group (irrespective of state)</li>
+<li><dl>
+<dt><code>qx</code></dt>
+<dd>death probability of actives (active -&gt; dead)}
+</dd>
+</dl></li>
+<li><dl>
+<dt><code>ix</code></dt>
+<dd>invalidity probability (active -&gt; incapacity)}
+</dd>
+</dl></li>
+<li><dl>
+<dt><code>qix</code></dt>
+<dd>death probability of invalid (invalid -&gt; dead)}
+</dd>
+</dl></li>
+<li><dl>
+<dt><code>rx</code></dt>
+<dd>reactivation probability (incapacity -&gt; active)}
+</dd>
+</dl></li>
+<li><dl>
+<dt><code>apx</code></dt>
+<dd>retirement probability (active -&gt; retirement), typically 1 for a fixed age}
+</dd>
+</dl></li>
+<li><dl>
+<dt><code>qpx</code></dt>
+<dd>death probability of retired (retired -&gt; dead)}
+</dd>
+</dl></li>
+<li><dl>
+<dt><code>hx</code></dt>
+<dd>probability of a widow at moment of death (dead -&gt; widow), y(x) age differene}
+</dd>
+</dl></li>
+<li><dl>
+<dt><code>qxw</code></dt>
+<dd>death probability of widows/widowers}
+</dd>
+</dl></li>
+<li><dl>
+<dt><code>yx</code></dt>
+<dd>age difference of widow(er) at moment of death}
+</dd>
+</dl></li>
+<li><dl>
+<dt><code>qgx</code></dt>
+<dd>death probability of total group (irrespective of state)}
+</dd>
+</dl></li>
 </ul>
 <p>All functions that handle <code>mortalityTable</code> object can be used with these slots.</p>
 <p>Additionally, the following functions are provided to obtain the set of all transition probabilities in one data frame:</p>
-- 
GitLab