diff --git a/DESCRIPTION b/DESCRIPTION index dcd95b110c5e1d222b5af401cd3488f9a849db3c..9e6473c62f53ba139753f573de0e7b9ef1994903 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Package: MortalityTables Type: Package -Version: 1.1 -Date: 2018-04-11 +Version: 2.0 +Date: 2020-08-03 Title: A Framework for Various Types of Mortality / Life Tables Authors@R: c(person("Reinhold", "Kainhofer", role=c("aut", "cre"), email="reinhold@kainhofer.com")) Author: Reinhold Kainhofer [aut, cre] @@ -12,19 +12,22 @@ Depends: ggplot2, methods, scales, - utils + utils, + pracma Suggests: lifecontingencies, MortalityLaws, knitr, - rmarkdown + tidyverse, + rmarkdown, + reshape2 Description: Classes to implement and plot cohort life tables for actuarial calculations. In particular, birth-year dependent mortality tables using a yearly trend to extrapolate from a base year are implemented, as well as period life table, cohort life tables using an age shift, and merged life tables. License: GPL (>= 2) -RoxygenNote: 6.1.0.9000 +RoxygenNote: 7.1.1 Collate: 'mortalityTable.R' 'mortalityTable.period.R' diff --git a/NAMESPACE b/NAMESPACE index c19c35b077bf9d2abf1822067bd568d0c9ee9e82..5d0aea220105352bf2af0b51c9ef297f2f27067d 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -3,6 +3,7 @@ S3method(plot,mortalityTable) export(deathProbabilitiesIndividual) export(fillAges) +export(fitExpExtrapolation) export(generateAgeShift) export(mT.addTrend) export(mT.extrapolateProbsExp) @@ -80,5 +81,6 @@ exportMethods(transitionProbabilities) exportMethods(undampenTrend) import(ggplot2) import(methods) +import(pracma) import(scales) import(stats) diff --git a/R/getPeriodTable.R b/R/getPeriodTable.R index cce0915e3ce52e226b688c4ccc160843b56edf9a..e9d66028c1f8c12444f6e2640d8c76c7533727b8 100644 --- a/R/getPeriodTable.R +++ b/R/getPeriodTable.R @@ -5,7 +5,7 @@ NULL #' #' @param object The life table object (class inherited from mortalityTable) #' @param Period The observation year, for which the death probabilities should -#' be determined +#' be determined. If missing, the base year of the table is used. #' @param ... Other parameters (currently unused) #' #' @examples @@ -24,8 +24,11 @@ setGeneric("getPeriodTable", #' \code{mortalityTable.period} object setMethod("getPeriodTable","mortalityTable", function (object, Period, ...) { + if(missing(Period)) { + Period = baseYear(object) + } mortalityTable.period( - name = paste(object@name, ", Period ", Period), + name = paste0(object@name, ", Period ", Period), baseYear = Period, ages = ages(object), deathProbs = periodDeathProbabilities(object, Period = Period, ...) diff --git a/R/mortalityTable.observed.R b/R/mortalityTable.observed.R index 904b5ad0b01d2751e07187f6a9a76a352aacba93..491c17903e0c6abd0e95f71b90ff09a222fc1c54 100644 --- a/R/mortalityTable.observed.R +++ b/R/mortalityTable.observed.R @@ -6,7 +6,7 @@ NULL #' A cohort life table described by actual observations (data frame of PODs #' per year and age) #' -#' @slot data The observations +#' @slot deathProbs The observed death probabilities (age-specific probability of dying within one year) #' @slot years The observation years #' @slot ages The observation ages #' diff --git a/R/mortalityTables.list.R b/R/mortalityTables.list.R index c22fe4c6dbd0227f08e91fe01b4d300a2797e060..dc74f54f688c297f2e60f1936e65d28fcc4538cb 100644 --- a/R/mortalityTables.list.R +++ b/R/mortalityTables.list.R @@ -16,7 +16,7 @@ #' @export mortalityTables.list = function(pattern = "*", package = c("^MortalityTables", "^PensionTables"), prefix = "MortalityTables") { ret = c() - pkgs = installed.packages() + pkgs = utils::installed.packages() for (p in pkgs[,1]) { if (any(sapply(package, grepl, p))) { # package matches the pattern given as argument filepath = system.file("extdata", package = p); diff --git a/R/mortalityTables.load.R b/R/mortalityTables.load.R index ce44f7bdaec40a7e283b99fed29d0d74d029fb9e..cc2df3facd2f781a5a8827e4c0de8023cdb9cb3f 100644 --- a/R/mortalityTables.load.R +++ b/R/mortalityTables.load.R @@ -22,7 +22,7 @@ mortalityTables.load = function(dataset, package = c("^MortalityTables", "^Pensi if (length(sets) == 0) { warning(sprintf("Unable to locate dataset '%s' provided by the %s package!", dataset, paste(c(package), collapse = " or "))); } - pkgs = installed.packages() + pkgs = utils::installed.packages() for (set in sets) { sname = gsub("[^-A-Za-z0-9_.]", "", set); message("Loading table dataset '", sname, "'"); diff --git a/R/pensionTable.R b/R/pensionTable.R index e95c1d3e0e171ce2a6ad817fa9c85a15da0458da..447267161dbf020307fbaf3b694c88c7e510c9ab 100644 --- a/R/pensionTable.R +++ b/R/pensionTable.R @@ -69,6 +69,7 @@ pensionTableProbArrange = function(x, q, i, qi, r, ap, api, qp, h, qw, yx, qg, a #' @slot yx Age difference of the widow to the deceased #' @slot qgx Death probability of whole group (derived from mortalityTable), irrespective of state #' @slot invalids.retire Whether invalids retire like actives or stay invalid until death +#' @slot probs.arrange A function that takes the individual transition probabilities of all the components and creates one object (a data.frame or a list) that will be returned by the method \code{transitionProbabilities}. The default arranges all tables without further modification. However, some pension tables (like the german Heubeck table) require the total mortality to be recalculated from the individual mortalities of actives and disabled. In this case, the function assigned to this slot will also calculate that total probability. #' #' @export pensionTable #' @exportClass pensionTable diff --git a/R/utilityFunctions.R b/R/utilityFunctions.R index 24b30bcb9f96c383dbc6a8a5973142a5dd51e0d4..b5bbdfbeadb18f48cf1e653b55dab088a6dae30b 100644 --- a/R/utilityFunctions.R +++ b/R/utilityFunctions.R @@ -13,7 +13,7 @@ fitExtrapolationLaw = function(data, ages, data.ages = ages, Dx = NULL, Ex = NUL fadeOut = intersect(ages, fadeOut) # Hohe Alter: Fitte Heligman-Pollard im Bereich 75-99 - fitLaw = MortalityLaw( + fitLaw = MortalityLaws::MortalityLaw( x = data.ages, Dx = Dx, Ex = Ex, qx = qx, law = law, opt.method = method, fit.this.x = fit) @@ -55,7 +55,7 @@ fitExtrapolationLaw = function(data, ages, data.ages = ages, Dx = NULL, Ex = NUL #' @param up Whether the fit is forward- or backward-facing #' @param verbose Whether to include data about the fit in the output #' -# exportMethod fitExpExtrapolation +#' @export fitExpExtrapolation = function(data, idx, up = TRUE, verbose = FALSE) { # browser() # Anchor point of the extrapolation @@ -109,7 +109,8 @@ mT.setName = function(table, name) { } - +#' Restrict/expand a mortalityTable to certain ages +#' #' Restrict the given \code{mortalityTable} object(s) to given ages, potentially filling with NA values to ensure they cover the full desired age range #' #' @param table A life table object (instance of a \code{mortalityTable} class) or a list, table or array of mortalityTable objects @@ -118,7 +119,8 @@ mT.setName = function(table, name) { #' #' @examples #' mortalityTables.load("Austria_Annuities") -#' # return a table with only ages 100-130, where ages above 120 (not defined in the original table) are filled with qx=1: +#' # return a table with only ages 100-130, where ages above 120 (not defined +#' # in the original table) are filled with qx=1: #' mT.fillAges(AVOe2005R.male, neededAges = 100:130, fill = 1) #' #' @export @@ -204,7 +206,7 @@ mT.scaleProbs = function(table, factor = 1.0, name.postfix = "scaled", name = NU #' @param dampingFunction Trend damping (passed on to \code{mortalityTable.trendProjection}) #' #' @export -mT.setTrend = function(table, trend, trendages = NULL, baseYear = NULL, dampingFunction = identity) { + mT.setTrend = function(table, trend, trendages = NULL, baseYear = NULL, dampingFunction = identity) { if (is.array(table)) { return(array( lapply(table, mT.setTrend, trend = trend, trendages = trendages, baseYear = baseYear, dampingFunction = dampingFunction), @@ -232,6 +234,22 @@ mT.addTrend = mT.setTrend +#' Extrapolate a mortality trend exponentially +#' +#' Extrapolate a mortality trend in a \code{mortalityTable} object using an exponential function (i.e. the trend decreases towards 0 exponentially). +#' This is mainly used to extrapolate an observed age-specific trend to very old ages. +#' Existing trend function values above (or below, respectively) the \code{idx} are overwritten. +#' +#' @param table A life table object (instance of a \code{mortalityTable} class) or a list, table or array of mortalityTable objects +#' @param idx Index (typically age) of the position of the fit +#' @param up Whether the fit is forward- or backward-facing (i.e. to old or young ages) +#' +#' @examples +#' mortalityTables.load("Austria_Annuities_AVOe2005R") +#' # extrapolate the trend exponentially from age 95 instead (overwriting the existing trend) +#' avoe2005exp = mT.extrapolateTrendExp(AVOe2005R.male, 95) +#' plotMortalityTrend(mT.setName(avoe2005exp, "AVÖ 2005R with trend extrapolated from age 85 up"), +#' AVOe2005R.male, Period = 2020, ages = 60:120) #' @export mT.extrapolateTrendExp = function(table, idx, up = TRUE) { if (is.array(table)) { @@ -255,6 +273,53 @@ mT.extrapolateTrendExp = function(table, idx, up = TRUE) { } +#' Translate base table of a cohort mortality table to a different observation year +#' +#' Translate the base table of a cohort life table to a different observation period, +#' using the existing base table and the trend functions. This only has an effect on +#' cohort life tables (e.g. objects of class \code{mortalityTable.trendProjection}). +#' For all other life tables (period life tables, observed, etc.), this function has no effect. +#' +#' This function also does not modify the resulting death probabilities of the life table +#' object, it just reparameterizes the internal representation of a life table +#' with trend projection factors. +#' +#' This functionality is often needed when publisheing life thables. Typically, +#' the table is derived from a certain observation period, so the resulting base +#' table describes the middle of the observation period. Projetion into the future +#' is then done using trend projection factors starting from that base table. +#' On the other hand, for the published table it is often desired to tabulate +#' not the middle of the observation period, but rather the current year as base +#' year for the extrapolation. +#' For the resulting period or cohort death probabilities, it is irrelevant, which +#' base year is used, as long as the shift to another base year (which includes +#' translating the base mortalities of the base year) is done consistenly with the +#' trend functions. The function \code{mT.translate} ensures this. +#' +#' @param table A life table object (instance of a \code{mortalityTable} class) +#' or a list, table or array of mortalityTable objects +#' @param baseYear Target base year. The underlying period life table of the +#' cohort life table is translated to the desired target base +#' year by applying the trend factors of the table, resulting +#' in a consistent shift of the internal representation without +#' changing the resulting probabilities. +#' @param name (optional) new name for the mortality table +#' +#' @examples +#' mortalityTables.load("Austria_Annuities_AVOe2005R") +#' # The AVOe2005R.male.nodamping has 2001 as the base year. Move its base year +#' # to 2020 without modifying cohort probabilities +#' avoe05r.shifted = mT.translate(AVOe2005R.male.nodamping, 2020, "AVÖ 2005-R, translated to 2020") +#' plotMortalityTables( +#' getPeriodTable(AVOe2005R.male.nodamping), +#' getPeriodTable(avoe05r.shifted), +#' title = "Base tables of the AVÖ 2005R a translated version to 2020") +#' # Even though the base tables are shifted, the resulting probabilities are +#' # unchanged (except for numeric artefacts) +#' abs(periodDeathProbabilities(AVOe2005R.male.nodamping, Period = 2050) - +#' periodDeathProbabilities(avoe05r.shifted, Period = 2050)) < 0.00000001 +#' abs(deathProbabilities(AVOe2005R.male.nodamping, YOB = 2050) - +#' deathProbabilities(avoe05r.shifted, YOB = 2050)) < 0.00000001 #' @export mT.translate = function(table, baseYear, name = NULL) { if (is.array(table)) { @@ -278,7 +343,31 @@ mT.translate = function(table, baseYear, name = NULL) { table } - +#' Extrapolate base table of a mortalityTable using an exponential function +#' +#' Extrapolate the base table of a \code{mortalityTable} object using an exponential +#' function (i.e. the death probabilities decreases towards 0 exponentially). +#' While death probabilities trending towards 0 for old ages is not realistic for +#' overall deaths, it can be useful to model causes of death that vanish in older age. +#' It is, however, most useful to extrapolate an observed base table to low ages +#' (e.g. for an insurance portfolio with practically no persons aged below 16). A +#' decline towards 0 for low ages makes sense in this case. +#' +#' The function needs only one age, from which the extrapolation using an exponential +#' function is applied. the strength of the exponential function is derived from the death probability at that age. +#' +#' @param table A life table object (instance of a \code{mortalityTable} class) +#' or a list, table or array of mortalityTable objects +#' @param age Index (typically age) of the position of the fit +#' @param up Whether the fit is forward- or backward-facing (i.e. to old or young ages) +#' +#' @examples +#' mortalityTables.load("Austria_Census") +#' # use the Austrian population mortalities for ages 18-95 and exponentially +#' # extrapolate them to lower ages +#' AT11.lowAgesExp = mT.extrapolateProbsExp(mort.AT.census.2011.male, 18, up = FALSE) +#' plotMortalityTables(mT.setName(AT11.lowAgesExp, "Ages below 16 are extrapolated exponentially"), +#' mort.AT.census.2011.male) #' @export mT.extrapolateProbsExp = function(table, age, up = TRUE) { if (is.array(table)) { @@ -305,7 +394,43 @@ mT.extrapolateProbsExp = function(table, age, up = TRUE) { table } - +#' Fit interpolation law to a mortality table and extrapolate +#' +#' Fit an extrapolation law (from the \code{MortalityLaws} Package to the base +#' table of the mortality table and use it for extrapolation. +#' +#' The fit is done using the \code{MortalityLaws::MortalityLaw} function, with the ages, death counts, exposures and death rates taken from the \code{table} mortality table object. The law and the fitting method can be given in the \code{mT.fitExtrapolationLaw} with +#' the law and the fitting method +#' +#' The age range \code{fit} is used to fit the law, while extrapolation is +#' applied only to ages given in parameter \code{extrapolate}. As fitting +#' does usually not result a smooth transition, a linear fade in or fade out +#' range can also be provided. +#' +#' @param table A life table object (instance of a \code{mortalityTable} class) or a list, table or array of mortalityTable objects +#' @param method The fitting method (passed on to [MortalityLaw]) +#' @param law The mortality law fitted to the data(passed on to [MortalityLaw]) +#' @param fit Age range to use for the fit +#' @param extrapolate Desired age range of the extrapolation (i.e. only those +#' ages will be extrapolated and added to the base table) +#' @param fadeIn age range to linearly fade in from the existing base table's values to the extrapolated +#' @param fadeOut age range to linearly fade out from the extrapolated base table's values to the existing +#' @param raw (optional) raw data to use for fitting. If not given, the raw +#' probabilities of the table (stored in \code{table@data$rawProbs}) +#' or the table's base table (\code{table@deathProbs}) is used by default. +#' +#' @examples +#' mortalityTables.load("Austria_Census") +#' # use Austrian population mortalities for ages 18-95 and exponentially +#' # extrapolate them to lower ages +#' AT11.lowAges = mT.fitExtrapolationLaw(mort.AT.census.2011.male, law = "opperman", +#' fit = 5:15, extrapolate = 0:15, +#' fadeIn = NULL, fadeOut = 5:15) +#' AT11.oldAges = mT.fitExtrapolationLaw(mort.AT.census.2011.male, law = "HP", +#' fit = 75:90, extrapolate = 75:120) +#' plotMortalityTables(mT.setName(AT11.lowAges, "Low ages fitted (ages 5-15 used)"), +#' mT.setName(AT11.oldAges, "old ages fitted (ages 75-90 used)"), +#' mort.AT.census.2011.male) #' @export mT.fitExtrapolationLaw = function(table, method = "LF2", law = "HP", fit = 75:99, extrapolate = 80:120, @@ -353,6 +478,23 @@ mT.fitExtrapolationLaw = function(table, method = "LF2", law = "HP", table } +#' Set additional information (year, description, type of risk, sex, etc.) for the pension table. +#' +#' A mortalityTable can store additional information to be used e.g. as additional +#' dimensions in ggplot calls. Typically, these information include sex, base +#' population, observation year, type of data (raw, smoothed), country, type of +#' risk, etc. These additional dimensions are stored in the \code{tbl@data} list +#' and will be used by plotMortalityTables and similar functions. +#' \code{pT.setDimInfo} works just like \code{mT.setDimInfo}, except that it sets +#' the information for all sub-tables of the pension table at the same time. +#' +#' @param tbl The \code{pensionTable} object to assign dimensional information +#' @param ... The dimensional information as named arguments. All names except tbl and append are allowed. +#' @param append Whether to append to existing dimensional data (append=TRUE) or +#' completely replace existing information (append=FALSE) +#' +#' @examples +#' # For examples, please see the \code{mT.setDimInfo} function. #' @export pT.setDimInfo = function(tbl, ..., append = TRUE) { if (is.array(tbl)) { @@ -387,6 +529,29 @@ pT.setDimInfo = function(tbl, ..., append = TRUE) { } +#' Set additional information (year, description, type of risk, sex, etc.) for the mortality table. +#' +#' A mortalityTable can store additional information to be used e.g. as additional +#' dimensions in ggplot calls. Typically, these information include sex, base +#' population, observation year, type of data (raw, smoothed), country, type of +#' risk, etc. These additional dimensions are stored in the \code{tbl@data} list +#' and will be used by plotMortalityTables and similar functions. +#' +#' @param tbl The \code{mortalityTable} object to assign dimensional information +#' @param ... The dimensional information as named arguments. All names except tbl and append are allowed. +#' @param append Whether to append to existing dimensional data (append=TRUE) or +#' completely replace existing information (append=FALSE) +#' +#' @examples +#' mortalityTables.load("Austria_Census") +#' mortalityTables.load("Austria_Annuities") +#' # The annuity tables use the population mortality as starting point. Set either +#' # population or anuuitants as dimensional info and use that dimension in a ggplot +#' # Most pre-defined tables already have the most important dimensions (like sex) stored. +#' at01.m = mT.setDimInfo(mort.AT.census.2001.male, population = "Population") +#' at01.f = mT.setDimInfo(mort.AT.census.2001.female, population = "Population") +#' av05r.m = mT.setDimInfo(AVOe2005R.male, population = "Annuitants") +#' plotMortalityTables(at01.m, at01.f, av05r.m) + aes(linetype = population, color = sex) #' @export mT.setDimInfo = function(tbl, ..., append = TRUE) { if (is.array(tbl)) { @@ -414,6 +579,39 @@ mT.setDimInfo = function(tbl, ..., append = TRUE) { } +#' Extract a sub-table from a pensionTable +#' +#' This function \code{pT.getSubTable} allows access to the individual components +#' of a pension table. In contrast to a "normal" mortalityTable, which describes +#' probablilities for only mortality or a single population, a pension table +#' describes transition probabilities for other states, too: +#' \itemize{ +#' \item active population (i.e. not disabled, not retired) +#' \item disabled population (occupational disability) +#' \item old-age pensioners +#' \item widows/widowers +#' } +#' +#' The corresponding transition probabilities are: +#' \describe{ +#' \item{qx}{mortality $q^a_x$ of actives (probability of death)} +#' \item{ix}{morbidity $i_x$ of actives (probability occupational disability)} +#' \item{qix}{mortality $q^i_x$ of disabled (probability of death)} +#' \item{rx}{reactivation $r_x$ of invalids (probability of becoming active again)} +#' \item{qpx}{mortality $q^p_x$ of old-age pensioners} +#' \item{qgx}{mortality $q^g_x$ of the whole population (including actives and disabled)} +#' \item{hx}{probability $h_x$ of leaving a widow/widower when dying at age $x$} +#' \item{yx}{average age $y(x)$ of surviving widow/widower when dying at age $x$} +#' \item{qwx}{mortality $q^w_x$ of widows} +#' } +#' +#' The function \code{pT.getSubTable} extracts a single transition probability +#' from the pension table, using the keys given above. The returned object is +#' also a \code{mortalityTable} object. +#' +#' @param table a \code{pensionTable} object +#' @param subtable the key describing the desired subtable (see above for the full list) +#' #' @export pT.getSubTable = function(table, subtable = "qx") { if (is.array(table)) { @@ -439,6 +637,38 @@ pT.getSubTable = function(table, subtable = "qx") { } } +#' Switch over mortalities from one table to another at a given age +#' +#' This function modifies a \code{mortalityTable} by switching moralities at a given +#' age to the mortalities of a second table. +#' +#' This function \code{mT.switchover} modifies the given \code{mortalityTable} +#' and replaces the mortalities starting from a given age by the mortalities +#' of a second table. By default, the transition from the original table to the +#' secondary table is a simple 0/1-switch at the given age \code{at}. This is done +#' internally by using \code{weights= (age >= at)}. +#' +#' By giving custom weights, one can also implement a smooth transition to the +#' secondary table. The weights are used as simple factors of a linear combination +#' of the two tables. +#' +#' @param table The \code{mortalityTable} to modify (transition the probabilities to the secondary table) +#' @param to The secondary \code{mortalityTable} containing the target probabilities +#' @param at The age at which to switch over to the secondary table (if \code{weights} are given, the \code{at} argument is ignored). +#' @param weights (optional) transition weights for transitioning the probabilities from the primary to the secondary table (as a linear combination). +#' +#' @examples +#' mortalityTables.load("Austria_Census") +#' mort.AT.switchover = mT.switchover(mort.AT.census.2011.male, mort.AT.census.2011.female, 60) +#' plotMortalityTables(mort.AT.census.2011.male, +#' mT.setName(mort.AT.switchover, "Switched to female at age 60")) +#' +#' # A smooth switchover is possible with custom weights +#' mort.AT.switchover.smooth = mT.switchover(mort.AT.census.2011.male, mort.AT.census.2011.female, +#' weights = c(rep(0, 55), 0:20/20, rep(1, 25))) +#' plotMortalityTables(mort.AT.census.2011.male, +#' mT.setName(mort.AT.switchover.smooth, "Switched to female smoothly at ages 55-75")) +#' #' @export mT.switchover = function(table, to, at, weights = NULL) { if (is.array(table)) { @@ -465,14 +695,33 @@ mT.switchover = function(table, to, at, weights = NULL) { +#' Round all components of a mortality table to the given number of digits +#' +#' The function mt.round rounds all components (base table, potentially also +#' trend functions or yearly improvement factors) to the given number of +#' numerical digits. For pensionTable objects, the function is applied to all components +#' +#' @param object The mortalityTable object to be rounded (or a list / array of mortalityTable object) +#' @param digits the desired number of significant digits to round to +#' +#' @examples +#' mortalityTables.load("Austria_Census") +#' AT.rounded1 = mT.round(mort.AT.census.2011.male, 1) +#' AT.rounded2 = mT.round(mort.AT.census.2011.male, 2) +#' AT.rounded3 = mT.round(mort.AT.census.2011.male, 3) +#' plotMortalityTables(mort.AT.census.2001.male, +#' mT.setName(AT.rounded1, "rounded to 1 digit"), +#' mT.setName(AT.rounded3, "rounded to 3 digits")) +#' #' @exportMethod mT.round setGeneric("mT.round", function(object, digits = 8) standardGeneric("mT.round")); -#' @describeIn setModification Return the life table with the given modification set +#' @describeIn mT.round Round the given mortalityTable to a given number of digits setMethod("mT.round", "mortalityTable", function(object, digits = 8) { object }) +#' @describeIn mT.round Round the given period mortality table to a given number of digits (base table and loadings) setMethod("mT.round", "mortalityTable.period", function(object, digits = 8) { o = callNextMethod() @@ -480,6 +729,7 @@ setMethod("mT.round", "mortalityTable.period", o@loading = round(o@loading, digits = digits) o }) +#' @describeIn mT.round Round the given mortalityTable with trend projection to a given number of digits (base table, loadings and trend(s)) setMethod("mT.round", "mortalityTable.trendProjection", function(object, digits = 8) { o = callNextMethod() @@ -491,6 +741,7 @@ setMethod("mT.round", "mortalityTable.trendProjection", } o }) +#' @describeIn mT.round Round the given mortalityTable with improvement factors to a given number of digits (base table, loadings and improvement factors) setMethod("mT.round", "mortalityTable.improvementFactors", function(object, digits = 8) { o = callNextMethod() @@ -500,17 +751,20 @@ setMethod("mT.round", "mortalityTable.improvementFactors", } o }) +#' @describeIn mT.round Round the mortalityTables stored in an array to a given number of digits setMethod("mT.round", "array", function(object, digits = 8) { array( lapply(object, mT.round, digits = digits), dim = dim(object), dimnames = dimnames(object)) }) +#' @describeIn mT.round Round the mortalityTables stored in a list to a given number of digits setMethod("mT.round", "list", function(object, digits = 8) { lapply(object, mT.round, digits = digits) }) +#' @describeIn mT.round Round all components of a pensionTable to a given number of digits setMethod("mT.round", "pensionTable", function(object, digits = 8) { object@qx = mT.round(object@qx, digits = digits) @@ -527,14 +781,50 @@ setMethod("mT.round", "pensionTable", +#' Remove all non-essential data (raw data, etc.) from a mortalityTable object +#' +#' The function mt.cleanup removes all non-essential data from a given mortalityTable +#' object. +#' +#' Mortality tables are often generated from raw data, that is smoothed, extrapolated, +#' etc. The mortalityTable class and its implementations can internally store the +#' raw probabilities and the intermediate results and parameters. This method +#' removes those information. All essential information (base table, ages, +#' trend functions, etc.) are preserved. +#' +#' Removed information includes: +#' * all elements of the \code{object@data} list, except for \code{dim} +#' * exposures +#' * names of named age, deathProbs and trend vectors +#' +#' For mortality tables with other mortalityTable components (like pension tables +#' or mixed tables), all components are cleaned. +#' +#' @param object The mortalityTable object to be cleaned. +#' +#' @examples +#' mortalityTables.load("Austria_Census") +#' # Whittaker-Henderson smoothing stores the raw input and the weights in the +#' # \code{data} slot of the table: +#' AT.smoothed = whittaker.mortalityTable(mort.AT.census.2011.male) +#' AT.smoothed@data$rawProbs +#' AT.smoothed@data$whittaker +#' +#' # cleaning up the table removes those non-essential information again: +#' AT.smoothed.clean = mT.cleanup(AT.smoothed) +#' AT.smoothed.clean@data$rawProbs +#' AT.smoothed.clean@data$whittaker +#' #' @exportMethod mT.cleanup setGeneric("mT.cleanup", function(object) standardGeneric("mT.cleanup")); +#' @describeIn mT.cleanup Clean up and remove all non-essential data from the mortalityTable object setMethod("mT.cleanup", "mortalityTable", function(object) { object@data = list(dim = object@data$dim) object }) +#' @describeIn mT.cleanup Clean up and remove all non-essential data from the mortalityTable.period object setMethod("mT.cleanup", "mortalityTable.period", function(object) { o = callNextMethod() @@ -543,6 +833,7 @@ setMethod("mT.cleanup", "mortalityTable.period", o@exposures = NULL o }) +#' @describeIn mT.cleanup Clean up and remove all non-essential data from the mortalityTable.trendProjection object setMethod("mT.cleanup", "mortalityTable.trendProjection", function(object) { o = callNextMethod() @@ -550,17 +841,20 @@ setMethod("mT.cleanup", "mortalityTable.trendProjection", o@trend2 = unname(o@trend2) o }) +#' @describeIn mT.cleanup Clean up and remove all non-essential data from the mortalityTable objects stored in the array setMethod("mT.cleanup", "array", function(object) { array( lapply(object, mT.cleanup), dim = dim(object), dimnames = dimnames(object)) }) +#' @describeIn mT.cleanup Clean up and remove all non-essential data from the mortalityTable objects stored in the list setMethod("mT.cleanup", "list", function(object) { lapply(object, mT.cleanup) }) +#' @describeIn mT.cleanup Clean up and remove all non-essential data from the mortalityTable objects stored in the array setMethod("mT.cleanup", "pensionTable", function(object) { object = callNextMethod() @@ -577,23 +871,50 @@ setMethod("mT.cleanup", "pensionTable", }) +#' Calculate the total mortality of the pension table +#' +#' The function \code{pT.calculateTotalMortality} calculates the overall mortality from the mortality of actives and disabled +#' +#' Since a pension tables describes mortalities of actives and of disabled separately, +#' the overall mortality is a function of these two. The function \code{pT.calculateTortalMortality} +#' calculates this overall mortality in a way that is consistent with the +#' individual transition probabilities of the pension table. +#' +#' In particular, the pension table describes the mortalities of the individual +#' sub-populations of actives, disabled and old-age pensioners. The overall +#' mortality is the mortality that results when one discards the additional information +#' about the state and just observes deaths. Internally, the overall mortality +#' is calculated by starting from 10,000 actives and applying the transition dynamics +#' of the pension table to the sub-populations. +#' +#' For a detailled description, see e.g. the documentation of the Austrian pension +#' table AVÖ 2018-P or the German Heubeck Table DAV 2005-G. +#' +#' @references +#' R. Kainhofer, J. Hirz, A. Schubert. AVÖ 2018-P: Rechnungsgrundlagen für die Pensionsversicherung. Dokumentation der Pensionstafel. AVÖ-Arbeitskreis Rechnungsgrundlagen, 2008. \url{https://avoe.at/rechnungsgrundlagen/pensionskassen/} +#' +#' @param object a \code{pensionTable} object +#' @param ... (unused) +#' #' @export pT.calculateTotalMortality = function(object, ...) { probs = transitionProbabilities(object, Period = object@baseYear, as.data.frame = TRUE) probs$qgALT = probs$qg - la = head(Reduce('*', (1 - probs$q - probs$i), init = 100000, accumulate = TRUE), -1) + la = utils::head(Reduce('*', (1 - probs$q - probs$i), init = 100000, accumulate = TRUE), -1) lg = la for (idx in seq_along(lg)) { probs$qg[idx] = probs$qi[idx] - la[idx]/lg[idx] * (probs$qi[idx] - probs$q[idx] - probs$i[idx] * 1/2 * probs$qi[idx] / (1 - 1/2*probs$qi[idx])) lg[idx + 1] = lg[idx] * (1 - probs$qg[idx]) } - lg = head(lg, -1) + lg = utils::head(lg, -1) probs$qg } - +#' @describeIn pT.calculateTotalMortality Calculate the total mortality of a +#' pension table and assign it to the \code{qgx} slot of that table. +#' #' @export pT.recalculateTotalMortality = function(object, ...) { if (is.array(table)) { @@ -614,7 +935,3 @@ pT.recalculateTotalMortality = function(object, ...) { object } -# pensionTables.list() -# pensionTables.load("*") -# library(tidyverse) -# AVOe2008P.male %>% mT.round(digits = 2) diff --git a/R/whittaker.mortalityTable.R b/R/whittaker.mortalityTable.R index 7861e2c95e40aa2ce81e6ff04cf345e58eeecd0c..13444b29104a6ee4ae25b59266119ff03722d13f 100644 --- a/R/whittaker.mortalityTable.R +++ b/R/whittaker.mortalityTable.R @@ -65,6 +65,7 @@ #' @seealso \code{\link[pracma]{whittaker}} #' #' @import scales +#' @import pracma #' @export whittaker.mortalityTable = function(table, lambda = 10, d = 2, name.postfix = ", smoothed", ..., weights = NULL, log = TRUE) { if (is.array(table)) { @@ -90,7 +91,7 @@ whittaker.mortalityTable = function(table, lambda = 10, d = 2, name.postfix = ", ages = table@ages if (missing(weights) || is.null(weights)) { - if (is.null(table@exposures) || is.na(table@exposures)) { + if (is.null(table@exposures) || any(is.na(table@exposures))) { weights = rep(1, length(ages)) } else { weights = table@exposures diff --git a/man/ageShift.Rd b/man/ageShift.Rd index e1444066b95a7e101c7e12e8d72133c5b974ba11..2598172d5273e8a445b96a565cd404672d9a206c 100644 --- a/man/ageShift.Rd +++ b/man/ageShift.Rd @@ -1,6 +1,5 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/ageShift.R -\docType{methods} \name{ageShift} \alias{ageShift} \alias{ageShift,mortalityTable-method} diff --git a/man/ages.Rd b/man/ages.Rd index ecd8b977f7cb35b0892cfbd5e9aa327db32ab143..cdf0844d0923132d36cd656ebcc84a6450b575b5 100644 --- a/man/ages.Rd +++ b/man/ages.Rd @@ -1,7 +1,6 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/ages.R, R/mortalityTable.jointLives.R, % R/mortalityTable.observed.R -\docType{methods} \name{ages} \alias{ages} \alias{ages,mortalityTable.period-method} diff --git a/man/baseTable.Rd b/man/baseTable.Rd index 98c35374d17b90aa96b5dbf937552d51190e593d..f07c47079d5f5aa49d64298a21aaa53581ef5859 100644 --- a/man/baseTable.Rd +++ b/man/baseTable.Rd @@ -1,6 +1,5 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/baseTable.R, R/mortalityTable.jointLives.R -\docType{methods} \name{baseTable} \alias{baseTable} \alias{baseTable,mortalityTable-method} diff --git a/man/baseYear.Rd b/man/baseYear.Rd index bcaa4fde9854857a6ddaf31a1006a2a266f84357..f58ed6b820f2556aa0a5b30acf46840971bec01c 100644 --- a/man/baseYear.Rd +++ b/man/baseYear.Rd @@ -1,6 +1,5 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/baseYear.R, R/mortalityTable.jointLives.R -\docType{methods} \name{baseYear} \alias{baseYear} \alias{baseYear,mortalityTable-method} diff --git a/man/calculateImprovements.Rd b/man/calculateImprovements.Rd index c6737a5f98797ebef05632df5c9610c5b90e6bc1..5ff188e3b88e74ba3eb1b78a1b6f5a393610f4aa 100644 --- a/man/calculateImprovements.Rd +++ b/man/calculateImprovements.Rd @@ -1,6 +1,5 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/mortalityTable.improvementFactors.R -\docType{methods} \name{calculateImprovements} \alias{calculateImprovements} \alias{calculateImprovements,mortalityTable.improvementFactors-method} @@ -9,9 +8,7 @@ \usage{ calculateImprovements(object, ...) - - \S4method{calculateImprovements}{mortalityTable.improvementFactors}(object, - ..., Period = NULL, YOB = 1982) +\S4method{calculateImprovements}{mortalityTable.improvementFactors}(object, ..., Period = NULL, YOB = 1982) } \arguments{ \item{object}{A pension table object (instance of a \code{\linkS4class{mortalityTable.improvementFactors}} class)} diff --git a/man/commutationNumbers.Rd b/man/commutationNumbers.Rd index 28217342fc02760672ebbb5d5be075e79e03a31e..0e251f9e2cca77dc38ea812de682e1737efce766 100644 --- a/man/commutationNumbers.Rd +++ b/man/commutationNumbers.Rd @@ -1,6 +1,5 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/commutationNumbers.R -\docType{methods} \name{commutationNumbers} \alias{commutationNumbers} \alias{commutationNumbers,mortalityTable-method} @@ -10,13 +9,11 @@ \usage{ commutationNumbers(object, ..., ages = NULL, i = 0.03) -\S4method{commutationNumbers}{mortalityTable}(object, ..., ages = NULL, - i = 0.03) +\S4method{commutationNumbers}{mortalityTable}(object, ..., ages = NULL, i = 0.03) \S4method{commutationNumbers}{numeric}(object, ages, i = 0.03) -\S4method{commutationNumbers}{pensionTable}(object, ..., ages = NULL, - i = 0.03) +\S4method{commutationNumbers}{pensionTable}(object, ..., ages = NULL, i = 0.03) } \arguments{ \item{object}{The life table object (class inherited from mortalityTable)} diff --git a/man/deathProbabilities.Rd b/man/deathProbabilities.Rd index 6f5e0a8e63031f54167b69555efa7e88e622ad61..e89bcaa3022f0ef7753ac362bd37890281f21aba 100644 --- a/man/deathProbabilities.Rd +++ b/man/deathProbabilities.Rd @@ -1,7 +1,6 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/deathProbabilities.R, % R/mortalityTable.jointLives.R, R/mortalityTable.observed.R -\docType{methods} \name{deathProbabilities} \alias{deathProbabilities} \alias{deathProbabilities,mortalityTable.period-method} @@ -15,26 +14,19 @@ \usage{ deathProbabilities(object, ..., ages = NULL, YOB = 1975) -\S4method{deathProbabilities}{mortalityTable.period}(object, ..., - ages = NULL, YOB = 1975) +\S4method{deathProbabilities}{mortalityTable.period}(object, ..., ages = NULL, YOB = 1975) -\S4method{deathProbabilities}{mortalityTable.ageShift}(object, ..., - ages = NULL, YOB = 1975) +\S4method{deathProbabilities}{mortalityTable.ageShift}(object, ..., ages = NULL, YOB = 1975) -\S4method{deathProbabilities}{mortalityTable.trendProjection}(object, ..., - ages = NULL, YOB = 1975) +\S4method{deathProbabilities}{mortalityTable.trendProjection}(object, ..., ages = NULL, YOB = 1975) -\S4method{deathProbabilities}{mortalityTable.improvementFactors}(object, - ..., ages = NULL, YOB = 1975) +\S4method{deathProbabilities}{mortalityTable.improvementFactors}(object, ..., ages = NULL, YOB = 1975) -\S4method{deathProbabilities}{mortalityTable.mixed}(object, ..., - ages = NULL, YOB = 1975) +\S4method{deathProbabilities}{mortalityTable.mixed}(object, ..., ages = NULL, YOB = 1975) -\S4method{deathProbabilities}{mortalityTable.jointLives}(object, ..., - ageDifferences = c(), ages = NULL, YOB = 1975) +\S4method{deathProbabilities}{mortalityTable.jointLives}(object, ..., ageDifferences = c(), ages = NULL, YOB = 1975) -\S4method{deathProbabilities}{mortalityTable.observed}(object, ..., - ages = NULL, YOB = 1975) +\S4method{deathProbabilities}{mortalityTable.observed}(object, ..., ages = NULL, YOB = 1975) } \arguments{ \item{object}{The life table object (class inherited from mortalityTable)} diff --git a/man/fillAges.Rd b/man/fillAges.Rd index f3bb2fdddf62bd1852a02a0448af2b5ead344010..02d6fe748cf6dbc00c69e67b7f118a4613f814c5 100644 --- a/man/fillAges.Rd +++ b/man/fillAges.Rd @@ -4,8 +4,7 @@ \alias{fillAges} \title{Fill the given probabilities with NA to match the desired age range.} \usage{ -fillAges(probs = c(), givenAges = c(), neededAges = NULL, - fill = NA_real_) +fillAges(probs = c(), givenAges = c(), neededAges = NULL, fill = NA_real_) } \arguments{ \item{probs}{Numeric vector} diff --git a/man/getCohortTable.Rd b/man/getCohortTable.Rd index 9a0386475b9cfc799688a2347b768b05752958da..0b868ababdbdebfab5078a9a78f66ea14bd4599c 100644 --- a/man/getCohortTable.Rd +++ b/man/getCohortTable.Rd @@ -1,6 +1,5 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/getCohortTable.R -\docType{methods} \name{getCohortTable} \alias{getCohortTable} \alias{getCohortTable,mortalityTable-method} diff --git a/man/getOmega.Rd b/man/getOmega.Rd index 5bce498a36cce7232ff7d525959aac87d2125107..0fa3c94d29d8b818a8056b9145abfcbfcb147f9d 100644 --- a/man/getOmega.Rd +++ b/man/getOmega.Rd @@ -1,7 +1,6 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/getOmega.R, R/mortalityTable.jointLives.R, % R/mortalityTable.observed.R -\docType{methods} \name{getOmega} \alias{getOmega} \alias{getOmega,mortalityTable.period-method} diff --git a/man/getPeriodTable.Rd b/man/getPeriodTable.Rd index 593791f83f345a35f4b365dc09f7b7c9241c2d70..b2172943a85435af4301e386ce4ef616207e6440 100644 --- a/man/getPeriodTable.Rd +++ b/man/getPeriodTable.Rd @@ -1,6 +1,5 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/getPeriodTable.R -\docType{methods} \name{getPeriodTable} \alias{getPeriodTable} \alias{getPeriodTable,mortalityTable-method} @@ -14,7 +13,7 @@ getPeriodTable(object, Period, ...) \item{object}{The life table object (class inherited from mortalityTable)} \item{Period}{The observation year, for which the death probabilities should -be determined} +be determined. If missing, the base year of the table is used.} \item{...}{Other parameters (currently unused)} } diff --git a/man/lifeTable.Rd b/man/lifeTable.Rd index f649a4db2f0305d67c5cbae69485f8a655b70985..356755406533383684917a449b7c829c3a018891 100644 --- a/man/lifeTable.Rd +++ b/man/lifeTable.Rd @@ -1,6 +1,5 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/lifeTable.R -\docType{methods} \name{lifeTable} \alias{lifeTable} \alias{lifeTable,mortalityTable-method} diff --git a/man/mT.cleanup.Rd b/man/mT.cleanup.Rd new file mode 100644 index 0000000000000000000000000000000000000000..54658f441b1c753d21febea00920c62a2ae25fbe --- /dev/null +++ b/man/mT.cleanup.Rd @@ -0,0 +1,82 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/utilityFunctions.R, R/mortalityTable.observed.R +\name{mT.cleanup} +\alias{mT.cleanup} +\alias{mT.cleanup,mortalityTable-method} +\alias{mT.cleanup,mortalityTable.period-method} +\alias{mT.cleanup,mortalityTable.trendProjection-method} +\alias{mT.cleanup,array-method} +\alias{mT.cleanup,list-method} +\alias{mT.cleanup,pensionTable-method} +\alias{mT.cleanup,mortalityTable.observed-method} +\title{Remove all non-essential data (raw data, etc.) from a mortalityTable object} +\usage{ +mT.cleanup(object) + +\S4method{mT.cleanup}{mortalityTable}(object) + +\S4method{mT.cleanup}{mortalityTable.period}(object) + +\S4method{mT.cleanup}{mortalityTable.trendProjection}(object) + +\S4method{mT.cleanup}{array}(object) + +\S4method{mT.cleanup}{list}(object) + +\S4method{mT.cleanup}{pensionTable}(object) + +\S4method{mT.cleanup}{mortalityTable.observed}(object) +} +\arguments{ +\item{object}{The mortalityTable object to be cleaned.} +} +\description{ +The function mt.cleanup removes all non-essential data from a given mortalityTable +object. +} +\details{ +Mortality tables are often generated from raw data, that is smoothed, extrapolated, +etc. The mortalityTable class and its implementations can internally store the +raw probabilities and the intermediate results and parameters. This method +removes those information. All essential information (base table, ages, +trend functions, etc.) are preserved. + +Removed information includes: + * all elements of the \code{object@data} list, except for \code{dim} + * exposures + * names of named age, deathProbs and trend vectors + +For mortality tables with other mortalityTable components (like pension tables +or mixed tables), all components are cleaned. +} +\section{Methods (by class)}{ +\itemize{ +\item \code{mortalityTable}: Clean up and remove all non-essential data from the mortalityTable object + +\item \code{mortalityTable.period}: Clean up and remove all non-essential data from the mortalityTable.period object + +\item \code{mortalityTable.trendProjection}: Clean up and remove all non-essential data from the mortalityTable.trendProjection object + +\item \code{array}: Clean up and remove all non-essential data from the mortalityTable objects stored in the array + +\item \code{list}: Clean up and remove all non-essential data from the mortalityTable objects stored in the list + +\item \code{pensionTable}: Clean up and remove all non-essential data from the mortalityTable objects stored in the array + +\item \code{mortalityTable.observed}: Clean up the internal data of the mortality table +}} + +\examples{ +mortalityTables.load("Austria_Census") +# Whittaker-Henderson smoothing stores the raw input and the weights in the +# \code{data} slot of the table: +AT.smoothed = whittaker.mortalityTable(mort.AT.census.2011.male) +AT.smoothed@data$rawProbs +AT.smoothed@data$whittaker + +# cleaning up the table removes those non-essential information again: +AT.smoothed.clean = mT.cleanup(AT.smoothed) +AT.smoothed.clean@data$rawProbs +AT.smoothed.clean@data$whittaker + +} diff --git a/man/mT.extrapolateProbsExp.Rd b/man/mT.extrapolateProbsExp.Rd new file mode 100644 index 0000000000000000000000000000000000000000..9395da5d97db94370129eac58d30c2917229c037 --- /dev/null +++ b/man/mT.extrapolateProbsExp.Rd @@ -0,0 +1,37 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/utilityFunctions.R +\name{mT.extrapolateProbsExp} +\alias{mT.extrapolateProbsExp} +\title{Extrapolate base table of a mortalityTable using an exponential function} +\usage{ +mT.extrapolateProbsExp(table, age, up = TRUE) +} +\arguments{ +\item{table}{A life table object (instance of a \code{mortalityTable} class) +or a list, table or array of mortalityTable objects} + +\item{age}{Index (typically age) of the position of the fit} + +\item{up}{Whether the fit is forward- or backward-facing (i.e. to old or young ages)} +} +\description{ +Extrapolate the base table of a \code{mortalityTable} object using an exponential +function (i.e. the death probabilities decreases towards 0 exponentially). +While death probabilities trending towards 0 for old ages is not realistic for +overall deaths, it can be useful to model causes of death that vanish in older age. +It is, however, most useful to extrapolate an observed base table to low ages +(e.g. for an insurance portfolio with practically no persons aged below 16). A +decline towards 0 for low ages makes sense in this case. +} +\details{ +The function needs only one age, from which the extrapolation using an exponential +function is applied. the strength of the exponential function is derived from the death probability at that age. +} +\examples{ +mortalityTables.load("Austria_Census") +# use the Austrian population mortalities for ages 18-95 and exponentially +# extrapolate them to lower ages +AT11.lowAgesExp = mT.extrapolateProbsExp(mort.AT.census.2011.male, 18, up = FALSE) +plotMortalityTables(mT.setName(AT11.lowAgesExp, "Ages below 16 are extrapolated exponentially"), + mort.AT.census.2011.male) +} diff --git a/man/mT.extrapolateTrendExp.Rd b/man/mT.extrapolateTrendExp.Rd new file mode 100644 index 0000000000000000000000000000000000000000..b59f4cd58f710796411038deb4f665d178d16fb3 --- /dev/null +++ b/man/mT.extrapolateTrendExp.Rd @@ -0,0 +1,27 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/utilityFunctions.R +\name{mT.extrapolateTrendExp} +\alias{mT.extrapolateTrendExp} +\title{Extrapolate a mortality trend exponentially} +\usage{ +mT.extrapolateTrendExp(table, idx, up = TRUE) +} +\arguments{ +\item{table}{A life table object (instance of a \code{mortalityTable} class) or a list, table or array of mortalityTable objects} + +\item{idx}{Index (typically age) of the position of the fit} + +\item{up}{Whether the fit is forward- or backward-facing (i.e. to old or young ages)} +} +\description{ +Extrapolate a mortality trend in a \code{mortalityTable} object using an exponential function (i.e. the trend decreases towards 0 exponentially). +This is mainly used to extrapolate an observed age-specific trend to very old ages. +Existing trend function values above (or below, respectively) the \code{idx} are overwritten. +} +\examples{ +mortalityTables.load("Austria_Annuities_AVOe2005R") +# extrapolate the trend exponentially from age 95 instead (overwriting the existing trend) +avoe2005exp = mT.extrapolateTrendExp(AVOe2005R.male, 95) +plotMortalityTrend(mT.setName(avoe2005exp, "AVÖ 2005R with trend extrapolated from age 85 up"), + AVOe2005R.male, Period = 2020, ages = 60:120) +} diff --git a/man/mT.fillAges.Rd b/man/mT.fillAges.Rd index abff96fd9a029a92fbf9417a444ecfbadefdd20d..282bf790cfaf1388fda7a7302390e5b3064dc28e 100644 --- a/man/mT.fillAges.Rd +++ b/man/mT.fillAges.Rd @@ -2,7 +2,7 @@ % Please edit documentation in R/utilityFunctions.R \name{mT.fillAges} \alias{mT.fillAges} -\title{Restrict the given \code{mortalityTable} object(s) to given ages, potentially filling with NA values to ensure they cover the full desired age range} +\title{Restrict/expand a mortalityTable to certain ages} \usage{ mT.fillAges(table, neededAges, fill = 0) } @@ -18,7 +18,8 @@ Restrict the given \code{mortalityTable} object(s) to given ages, potentially fi } \examples{ mortalityTables.load("Austria_Annuities") -# return a table with only ages 100-130, where ages above 120 (not defined in the original table) are filled with qx=1: +# return a table with only ages 100-130, where ages above 120 (not defined +# in the original table) are filled with qx=1: mT.fillAges(AVOe2005R.male, neededAges = 100:130, fill = 1) } diff --git a/man/mT.fitExtrapolationLaw.Rd b/man/mT.fitExtrapolationLaw.Rd new file mode 100644 index 0000000000000000000000000000000000000000..d330e1ba52de6ce9ead61711203a7a4f4e7de8f2 --- /dev/null +++ b/man/mT.fitExtrapolationLaw.Rd @@ -0,0 +1,63 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/utilityFunctions.R +\name{mT.fitExtrapolationLaw} +\alias{mT.fitExtrapolationLaw} +\title{Fit interpolation law to a mortality table and extrapolate} +\usage{ +mT.fitExtrapolationLaw( + table, + method = "LF2", + law = "HP", + fit = 75:99, + extrapolate = 80:120, + fadeIn = 80:90, + fadeOut = NULL, + raw = NULL +) +} +\arguments{ +\item{table}{A life table object (instance of a \code{mortalityTable} class) or a list, table or array of mortalityTable objects} + +\item{method}{The fitting method (passed on to [MortalityLaw])} + +\item{law}{The mortality law fitted to the data(passed on to [MortalityLaw])} + +\item{fit}{Age range to use for the fit} + +\item{extrapolate}{Desired age range of the extrapolation (i.e. only those +ages will be extrapolated and added to the base table)} + +\item{fadeIn}{age range to linearly fade in from the existing base table's values to the extrapolated} + +\item{fadeOut}{age range to linearly fade out from the extrapolated base table's values to the existing} + +\item{raw}{(optional) raw data to use for fitting. If not given, the raw +probabilities of the table (stored in \code{table@data$rawProbs}) +or the table's base table (\code{table@deathProbs}) is used by default.} +} +\description{ +Fit an extrapolation law (from the \code{MortalityLaws} Package to the base +table of the mortality table and use it for extrapolation. +} +\details{ +The fit is done using the \code{MortalityLaws::MortalityLaw} function, with the ages, death counts, exposures and death rates taken from the \code{table} mortality table object. The law and the fitting method can be given in the \code{mT.fitExtrapolationLaw} with +the law and the fitting method + +The age range \code{fit} is used to fit the law, while extrapolation is +applied only to ages given in parameter \code{extrapolate}. As fitting +does usually not result a smooth transition, a linear fade in or fade out +range can also be provided. +} +\examples{ +mortalityTables.load("Austria_Census") +# use Austrian population mortalities for ages 18-95 and exponentially +# extrapolate them to lower ages +AT11.lowAges = mT.fitExtrapolationLaw(mort.AT.census.2011.male, law = "opperman", + fit = 5:15, extrapolate = 0:15, + fadeIn = NULL, fadeOut = 5:15) +AT11.oldAges = mT.fitExtrapolationLaw(mort.AT.census.2011.male, law = "HP", + fit = 75:90, extrapolate = 75:120) +plotMortalityTables(mT.setName(AT11.lowAges, "Low ages fitted (ages 5-15 used)"), + mT.setName(AT11.oldAges, "old ages fitted (ages 75-90 used)"), + mort.AT.census.2011.male) +} diff --git a/man/mT.round.Rd b/man/mT.round.Rd new file mode 100644 index 0000000000000000000000000000000000000000..7762b357ddc4175a41acf51f8215b3b86aec8fd4 --- /dev/null +++ b/man/mT.round.Rd @@ -0,0 +1,71 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/utilityFunctions.R, R/mortalityTable.observed.R +\name{mT.round} +\alias{mT.round} +\alias{mT.round,mortalityTable-method} +\alias{mT.round,mortalityTable.period-method} +\alias{mT.round,mortalityTable.trendProjection-method} +\alias{mT.round,mortalityTable.improvementFactors-method} +\alias{mT.round,array-method} +\alias{mT.round,list-method} +\alias{mT.round,pensionTable-method} +\alias{mT.round,mortalityTable.observed-method} +\title{Round all components of a mortality table to the given number of digits} +\usage{ +mT.round(object, digits = 8) + +\S4method{mT.round}{mortalityTable}(object, digits = 8) + +\S4method{mT.round}{mortalityTable.period}(object, digits = 8) + +\S4method{mT.round}{mortalityTable.trendProjection}(object, digits = 8) + +\S4method{mT.round}{mortalityTable.improvementFactors}(object, digits = 8) + +\S4method{mT.round}{array}(object, digits = 8) + +\S4method{mT.round}{list}(object, digits = 8) + +\S4method{mT.round}{pensionTable}(object, digits = 8) + +\S4method{mT.round}{mortalityTable.observed}(object, digits = 8) +} +\arguments{ +\item{object}{The mortalityTable object to be rounded (or a list / array of mortalityTable object)} + +\item{digits}{the desired number of significant digits to round to} +} +\description{ +The function mt.round rounds all components (base table, potentially also +trend functions or yearly improvement factors) to the given number of +numerical digits. For pensionTable objects, the function is applied to all components +} +\section{Methods (by class)}{ +\itemize{ +\item \code{mortalityTable}: Round the given mortalityTable to a given number of digits + +\item \code{mortalityTable.period}: Round the given period mortality table to a given number of digits (base table and loadings) + +\item \code{mortalityTable.trendProjection}: Round the given mortalityTable with trend projection to a given number of digits (base table, loadings and trend(s)) + +\item \code{mortalityTable.improvementFactors}: Round the given mortalityTable with improvement factors to a given number of digits (base table, loadings and improvement factors) + +\item \code{array}: Round the mortalityTables stored in an array to a given number of digits + +\item \code{list}: Round the mortalityTables stored in a list to a given number of digits + +\item \code{pensionTable}: Round all components of a pensionTable to a given number of digits + +\item \code{mortalityTable.observed}: Return the life table with the values rounded to the given number of digits +}} + +\examples{ +mortalityTables.load("Austria_Census") +AT.rounded1 = mT.round(mort.AT.census.2011.male, 1) +AT.rounded2 = mT.round(mort.AT.census.2011.male, 2) +AT.rounded3 = mT.round(mort.AT.census.2011.male, 3) +plotMortalityTables(mort.AT.census.2001.male, + mT.setName(AT.rounded1, "rounded to 1 digit"), + mT.setName(AT.rounded3, "rounded to 3 digits")) + +} diff --git a/man/mT.scaleProbs.Rd b/man/mT.scaleProbs.Rd index a2c799d094d19142f203af88ec004016cc2554c5..dbf4d4ef22f871c99978ae2a06e54abf2c7d949c 100644 --- a/man/mT.scaleProbs.Rd +++ b/man/mT.scaleProbs.Rd @@ -4,8 +4,7 @@ \alias{mT.scaleProbs} \title{Scale all probabilities of the given \code{mortalityTable} object(s) by the given factor} \usage{ -mT.scaleProbs(table, factor = 1, name.postfix = "scaled", - name = NULL) +mT.scaleProbs(table, factor = 1, name.postfix = "scaled", name = NULL) } \arguments{ \item{table}{A life table object (instance of a \code{mortalityTable} class) or a list, table or array of mortalityTable objects} diff --git a/man/mT.setDimInfo.Rd b/man/mT.setDimInfo.Rd new file mode 100644 index 0000000000000000000000000000000000000000..c6b92686fec0b616097392b2251f4c0fa5c4e168 --- /dev/null +++ b/man/mT.setDimInfo.Rd @@ -0,0 +1,34 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/utilityFunctions.R +\name{mT.setDimInfo} +\alias{mT.setDimInfo} +\title{Set additional information (year, description, type of risk, sex, etc.) for the mortality table.} +\usage{ +mT.setDimInfo(tbl, ..., append = TRUE) +} +\arguments{ +\item{tbl}{The \code{mortalityTable} object to assign dimensional information} + +\item{...}{The dimensional information as named arguments. All names except tbl and append are allowed.} + +\item{append}{Whether to append to existing dimensional data (append=TRUE) or +completely replace existing information (append=FALSE)} +} +\description{ +A mortalityTable can store additional information to be used e.g. as additional +dimensions in ggplot calls. Typically, these information include sex, base +population, observation year, type of data (raw, smoothed), country, type of +risk, etc. These additional dimensions are stored in the \code{tbl@data} list +and will be used by plotMortalityTables and similar functions. +} +\examples{ +mortalityTables.load("Austria_Census") +mortalityTables.load("Austria_Annuities") +# The annuity tables use the population mortality as starting point. Set either +# population or anuuitants as dimensional info and use that dimension in a ggplot +# Most pre-defined tables already have the most important dimensions (like sex) stored. +at01.m = mT.setDimInfo(mort.AT.census.2001.male, population = "Population") +at01.f = mT.setDimInfo(mort.AT.census.2001.female, population = "Population") +av05r.m = mT.setDimInfo(AVOe2005R.male, population = "Annuitants") +plotMortalityTables(at01.m, at01.f, av05r.m) + aes(linetype = population, color = sex) +} diff --git a/man/mT.setTrend.Rd b/man/mT.setTrend.Rd index 231fbdabd748925f28d1bbd3f816cb0b50489e16..f6dc57a7160f46eefc976f949f1e8ef48ac7b222 100644 --- a/man/mT.setTrend.Rd +++ b/man/mT.setTrend.Rd @@ -5,11 +5,21 @@ \alias{mT.addTrend} \title{Set/Add a trend vector for the probabilities of the given \code{mortalityTable} object(s). Returns a \code{mortalityTable.trendProjection} object} \usage{ -mT.setTrend(table, trend, trendages = NULL, baseYear = NULL, - dampingFunction = identity) +mT.setTrend( + table, + trend, + trendages = NULL, + baseYear = NULL, + dampingFunction = identity +) -mT.addTrend(table, trend, trendages = NULL, baseYear = NULL, - dampingFunction = identity) +mT.addTrend( + table, + trend, + trendages = NULL, + baseYear = NULL, + dampingFunction = identity +) } \arguments{ \item{table}{A life table object (instance of a \code{mortalityTable} class) or a list, table or array of mortalityTable objects} diff --git a/man/mT.switchover.Rd b/man/mT.switchover.Rd new file mode 100644 index 0000000000000000000000000000000000000000..623c5d00be14759ae415d0b5503c48d07dc91242 --- /dev/null +++ b/man/mT.switchover.Rd @@ -0,0 +1,45 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/utilityFunctions.R +\name{mT.switchover} +\alias{mT.switchover} +\title{Switch over mortalities from one table to another at a given age} +\usage{ +mT.switchover(table, to, at, weights = NULL) +} +\arguments{ +\item{table}{The \code{mortalityTable} to modify (transition the probabilities to the secondary table)} + +\item{to}{The secondary \code{mortalityTable} containing the target probabilities} + +\item{at}{The age at which to switch over to the secondary table (if \code{weights} are given, the \code{at} argument is ignored).} + +\item{weights}{(optional) transition weights for transitioning the probabilities from the primary to the secondary table (as a linear combination).} +} +\description{ +This function modifies a \code{mortalityTable} by switching moralities at a given +age to the mortalities of a second table. +} +\details{ +This function \code{mT.switchover} modifies the given \code{mortalityTable} +and replaces the mortalities starting from a given age by the mortalities +of a second table. By default, the transition from the original table to the +secondary table is a simple 0/1-switch at the given age \code{at}. This is done +internally by using \code{weights= (age >= at)}. + +By giving custom weights, one can also implement a smooth transition to the +secondary table. The weights are used as simple factors of a linear combination +of the two tables. +} +\examples{ +mortalityTables.load("Austria_Census") +mort.AT.switchover = mT.switchover(mort.AT.census.2011.male, mort.AT.census.2011.female, 60) +plotMortalityTables(mort.AT.census.2011.male, + mT.setName(mort.AT.switchover, "Switched to female at age 60")) + +# A smooth switchover is possible with custom weights +mort.AT.switchover.smooth = mT.switchover(mort.AT.census.2011.male, mort.AT.census.2011.female, + weights = c(rep(0, 55), 0:20/20, rep(1, 25))) +plotMortalityTables(mort.AT.census.2011.male, + mT.setName(mort.AT.switchover.smooth, "Switched to female smoothly at ages 55-75")) + +} diff --git a/man/mT.translate.Rd b/man/mT.translate.Rd new file mode 100644 index 0000000000000000000000000000000000000000..dde6cc1c0c4c2596b52e9d95b2900a2bd03c1ecf --- /dev/null +++ b/man/mT.translate.Rd @@ -0,0 +1,59 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/utilityFunctions.R +\name{mT.translate} +\alias{mT.translate} +\title{Translate base table of a cohort mortality table to a different observation year} +\usage{ +mT.translate(table, baseYear, name = NULL) +} +\arguments{ +\item{table}{A life table object (instance of a \code{mortalityTable} class) +or a list, table or array of mortalityTable objects} + +\item{baseYear}{Target base year. The underlying period life table of the +cohort life table is translated to the desired target base +year by applying the trend factors of the table, resulting +in a consistent shift of the internal representation without +changing the resulting probabilities.} + +\item{name}{(optional) new name for the mortality table} +} +\description{ +Translate the base table of a cohort life table to a different observation period, +using the existing base table and the trend functions. This only has an effect on +cohort life tables (e.g. objects of class \code{mortalityTable.trendProjection}). +For all other life tables (period life tables, observed, etc.), this function has no effect. +} +\details{ +This function also does not modify the resulting death probabilities of the life table +object, it just reparameterizes the internal representation of a life table +with trend projection factors. + +This functionality is often needed when publisheing life thables. Typically, +the table is derived from a certain observation period, so the resulting base +table describes the middle of the observation period. Projetion into the future +is then done using trend projection factors starting from that base table. +On the other hand, for the published table it is often desired to tabulate +not the middle of the observation period, but rather the current year as base +year for the extrapolation. +For the resulting period or cohort death probabilities, it is irrelevant, which +base year is used, as long as the shift to another base year (which includes +translating the base mortalities of the base year) is done consistenly with the +trend functions. The function \code{mT.translate} ensures this. +} +\examples{ +mortalityTables.load("Austria_Annuities_AVOe2005R") +# The AVOe2005R.male.nodamping has 2001 as the base year. Move its base year +# to 2020 without modifying cohort probabilities +avoe05r.shifted = mT.translate(AVOe2005R.male.nodamping, 2020, "AVÖ 2005-R, translated to 2020") +plotMortalityTables( + getPeriodTable(AVOe2005R.male.nodamping), + getPeriodTable(avoe05r.shifted), + title = "Base tables of the AVÖ 2005R a translated version to 2020") +# Even though the base tables are shifted, the resulting probabilities are +# unchanged (except for numeric artefacts) +abs(periodDeathProbabilities(AVOe2005R.male.nodamping, Period = 2050) - + periodDeathProbabilities(avoe05r.shifted, Period = 2050)) < 0.00000001 +abs(deathProbabilities(AVOe2005R.male.nodamping, YOB = 2050) - + deathProbabilities(avoe05r.shifted, YOB = 2050)) < 0.00000001 +} diff --git a/man/mortalityImprovement.Rd b/man/mortalityImprovement.Rd index 1d6983e54a9267403853e73039796b75f544b552..793aa39a91362815e86a91e39fd84e0f22f79b4c 100644 --- a/man/mortalityImprovement.Rd +++ b/man/mortalityImprovement.Rd @@ -1,6 +1,5 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/mortalityImprovement.R -\docType{methods} \name{mortalityImprovement} \alias{mortalityImprovement} \alias{mortalityImprovement,mortalityTable-method} @@ -8,8 +7,7 @@ \usage{ mortalityImprovement(object, ..., Period = NULL, YOB = 1975) -\S4method{mortalityImprovement}{mortalityTable}(object, ..., - Period = NULL, YOB = 1975) +\S4method{mortalityImprovement}{mortalityTable}(object, ..., Period = NULL, YOB = 1975) } \arguments{ \item{object}{The life table object (class inherited from mortalityTable)} diff --git a/man/mortalityTable.NA.Rd b/man/mortalityTable.NA.Rd index 1afdd284a16995552008a437b934cd843c911eee..d79884c3bfc568cd0a480dc8a40760eb97aac7cb 100644 --- a/man/mortalityTable.NA.Rd +++ b/man/mortalityTable.NA.Rd @@ -4,7 +4,9 @@ \name{mortalityTable.NA} \alias{mortalityTable.NA} \title{Empty mortality table indicating NA} -\format{An object of class \code{mortalityTable.period} of length 1.} +\format{ +An object of class \code{mortalityTable.period} of length 1. +} \usage{ mortalityTable.NA } diff --git a/man/mortalityTable.observed-class.Rd b/man/mortalityTable.observed-class.Rd index f02407c817bfadc88b91dd077ba539ba33bb9ed0..4a58a5ae1b4fb9dbe753d2570451062b87b2ceb2 100644 --- a/man/mortalityTable.observed-class.Rd +++ b/man/mortalityTable.observed-class.Rd @@ -12,7 +12,7 @@ per year and age) \section{Slots}{ \describe{ -\item{\code{data}}{The observations} +\item{\code{deathProbs}}{The observed death probabilities (age-specific probability of dying within one year)} \item{\code{years}}{The observation years} diff --git a/man/mortalityTable.once.Rd b/man/mortalityTable.once.Rd index e82137355f62d07111dc7be178da20fa6b900552..61824899ca7744bf5f91ec7e758e85897955ab86 100644 --- a/man/mortalityTable.once.Rd +++ b/man/mortalityTable.once.Rd @@ -4,8 +4,11 @@ \alias{mortalityTable.once} \title{Generate a (deterministic) mortality table with only one probability set to 1 (for the given age)} \usage{ -mortalityTable.once(transitionAge, - name = "Deterministic mortality table", ages = 0:99) +mortalityTable.once( + transitionAge, + name = "Deterministic mortality table", + ages = 0:99 +) } \arguments{ \item{transitionAge}{The age where the deterministic transition occurs} diff --git a/man/mortalityTable.onceAndFuture.Rd b/man/mortalityTable.onceAndFuture.Rd index 33c9cd1fd5cf97752909ed1935dda92c0774cb7e..b18be1981fdaca76c005c1814a4aa6a5754d9a80 100644 --- a/man/mortalityTable.onceAndFuture.Rd +++ b/man/mortalityTable.onceAndFuture.Rd @@ -4,8 +4,11 @@ \alias{mortalityTable.onceAndFuture} \title{Generate a (deterministic) mortality table with all probabilities starting at a given age set to 1} \usage{ -mortalityTable.onceAndFuture(transitionAge, - name = "Deterministic mortality table", ages = 0:99) +mortalityTable.onceAndFuture( + transitionAge, + name = "Deterministic mortality table", + ages = 0:99 +) } \arguments{ \item{transitionAge}{The age where the deterministic transition occurs} diff --git a/man/mortalityTables.list.Rd b/man/mortalityTables.list.Rd index e6880d3228b76a626abd06b9e613f069ac9f7af9..bdffed38b46f88cd7379593946db110437890333 100644 --- a/man/mortalityTables.list.Rd +++ b/man/mortalityTables.list.Rd @@ -5,15 +5,18 @@ \title{List all available sets of life tables provided by the \link[MortalityTables]{MortalityTables-package} package An existing life table can then be loaded with \link{mortalityTables.load}.} \usage{ -mortalityTables.list(pattern = "*", package = c("MortalityTables", - "MortalityTablesPrivate"), prefix = "MortalityTables") +mortalityTables.list( + pattern = "*", + package = c("^MortalityTables", "^PensionTables"), + prefix = "MortalityTables" +) } \arguments{ -\item{pattern}{Restrict the results only to life table sets that match the pattern (default: "*" to show all sets)} +\item{pattern}{Restrict the results only to life table sets that match the pattern with wildcards (default: "*" to show all sets)} \item{package}{The package that contains the desired dataset in its \code{extdata/} directory. Defaults to the "MortalityTables" package. -Multiple packages can be given as a vector.} +Multiple packages can be given as a vector, even using regular expressions.} \item{prefix}{The file prefix, defaults to MortalityTables. Can be overridden to list other types of files, like "PensionTables"} } diff --git a/man/mortalityTables.load.Rd b/man/mortalityTables.load.Rd index 36e54837723ed17501ab3cf42315730edcebb073..dc19583b0dea87c82e641d5ddfd176dbca100092 100644 --- a/man/mortalityTables.load.Rd +++ b/man/mortalityTables.load.Rd @@ -4,8 +4,11 @@ \alias{mortalityTables.load} \title{Load a named set of mortality tables provided by the \link{MortalityTables} package} \usage{ -mortalityTables.load(dataset, package = c("MortalityTables", - "MortalityTablesPrivate"), prefix = "MortalityTables") +mortalityTables.load( + dataset, + package = c("^MortalityTables", "^PensionTables"), + prefix = "MortalityTables" +) } \arguments{ \item{dataset}{The set(s) of life tables to be loaded. A list of all available @@ -13,8 +16,9 @@ data sets is provided by the function \code{\link{mortalityTables.list}}. Wildcards (*) are allowed to match and load multiple datasets.} \item{package}{The package that contains the dataset in its \code{extdata/} -directory. Defaults to the "MortalityTables" package. -Multiple packages can be given as a vector.} +directory. Defaults to all packages starting with names that +start with "MortalityTables" or "PensionTables". +Multiple packages can be given as a vector, even using regular expressions.} \item{prefix}{The prefix for the data sets (default is "MortalityTables").} } diff --git a/man/pT.calculateTotalMortality.Rd b/man/pT.calculateTotalMortality.Rd new file mode 100644 index 0000000000000000000000000000000000000000..982f38165f8851d386f2fa973a0facb0785cf701 --- /dev/null +++ b/man/pT.calculateTotalMortality.Rd @@ -0,0 +1,44 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/utilityFunctions.R +\name{pT.calculateTotalMortality} +\alias{pT.calculateTotalMortality} +\alias{pT.recalculateTotalMortality} +\title{Calculate the total mortality of the pension table} +\usage{ +pT.calculateTotalMortality(object, ...) + +pT.recalculateTotalMortality(object, ...) +} +\arguments{ +\item{object}{a \code{pensionTable} object} + +\item{...}{(unused)} +} +\description{ +The function \code{pT.calculateTotalMortality} calculates the overall mortality from the mortality of actives and disabled +} +\details{ +Since a pension tables describes mortalities of actives and of disabled separately, +the overall mortality is a function of these two. The function \code{pT.calculateTortalMortality} +calculates this overall mortality in a way that is consistent with the +individual transition probabilities of the pension table. + +In particular, the pension table describes the mortalities of the individual +sub-populations of actives, disabled and old-age pensioners. The overall +mortality is the mortality that results when one discards the additional information +about the state and just observes deaths. Internally, the overall mortality +is calculated by starting from 10,000 actives and applying the transition dynamics +of the pension table to the sub-populations. + +For a detailled description, see e.g. the documentation of the Austrian pension +table AVÖ 2018-P or the German Heubeck Table DAV 2005-G. +} +\section{Functions}{ +\itemize{ +\item \code{pT.recalculateTotalMortality}: Calculate the total mortality of a +pension table and assign it to the \code{qgx} slot of that table. +}} + +\references{ +R. Kainhofer, J. Hirz, A. Schubert. AVÖ 2018-P: Rechnungsgrundlagen für die Pensionsversicherung. Dokumentation der Pensionstafel. AVÖ-Arbeitskreis Rechnungsgrundlagen, 2008. \url{https://avoe.at/rechnungsgrundlagen/pensionskassen/} +} diff --git a/man/pT.getSubTable.Rd b/man/pT.getSubTable.Rd new file mode 100644 index 0000000000000000000000000000000000000000..b532c6df172f488c57058d026bc2a2c4e4c11d47 --- /dev/null +++ b/man/pT.getSubTable.Rd @@ -0,0 +1,43 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/utilityFunctions.R +\name{pT.getSubTable} +\alias{pT.getSubTable} +\title{Extract a sub-table from a pensionTable} +\usage{ +pT.getSubTable(table, subtable = "qx") +} +\arguments{ +\item{table}{a \code{pensionTable} object} + +\item{subtable}{the key describing the desired subtable (see above for the full list)} +} +\description{ +This function \code{pT.getSubTable} allows access to the individual components + of a pension table. In contrast to a "normal" mortalityTable, which describes + probablilities for only mortality or a single population, a pension table + describes transition probabilities for other states, too: + \itemize{ + \item active population (i.e. not disabled, not retired) + \item disabled population (occupational disability) + \item old-age pensioners + \item widows/widowers + } +} +\details{ +The corresponding transition probabilities are: + \describe{ + \item{qx}{mortality $q^a_x$ of actives (probability of death)} + \item{ix}{morbidity $i_x$ of actives (probability occupational disability)} + \item{qix}{mortality $q^i_x$ of disabled (probability of death)} + \item{rx}{reactivation $r_x$ of invalids (probability of becoming active again)} + \item{qpx}{mortality $q^p_x$ of old-age pensioners} + \item{qgx}{mortality $q^g_x$ of the whole population (including actives and disabled)} + \item{hx}{probability $h_x$ of leaving a widow/widower when dying at age $x$} + \item{yx}{average age $y(x)$ of surviving widow/widower when dying at age $x$} + \item{qwx}{mortality $q^w_x$ of widows} + } + + The function \code{pT.getSubTable} extracts a single transition probability + from the pension table, using the keys given above. The returned object is + also a \code{mortalityTable} object. +} diff --git a/man/pT.setDimInfo.Rd b/man/pT.setDimInfo.Rd new file mode 100644 index 0000000000000000000000000000000000000000..184c2555d1d83b1efd76cf2bcaf8cb0363a5d488 --- /dev/null +++ b/man/pT.setDimInfo.Rd @@ -0,0 +1,28 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/utilityFunctions.R +\name{pT.setDimInfo} +\alias{pT.setDimInfo} +\title{Set additional information (year, description, type of risk, sex, etc.) for the pension table.} +\usage{ +pT.setDimInfo(tbl, ..., append = TRUE) +} +\arguments{ +\item{tbl}{The \code{pensionTable} object to assign dimensional information} + +\item{...}{The dimensional information as named arguments. All names except tbl and append are allowed.} + +\item{append}{Whether to append to existing dimensional data (append=TRUE) or +completely replace existing information (append=FALSE)} +} +\description{ +A mortalityTable can store additional information to be used e.g. as additional +dimensions in ggplot calls. Typically, these information include sex, base +population, observation year, type of data (raw, smoothed), country, type of +risk, etc. These additional dimensions are stored in the \code{tbl@data} list +and will be used by plotMortalityTables and similar functions. +\code{pT.setDimInfo} works just like \code{mT.setDimInfo}, except that it sets +the information for all sub-tables of the pension table at the same time. +} +\examples{ +# For examples, please see the \code{mT.setDimInfo} function. +} diff --git a/man/pensionTable-class.Rd b/man/pensionTable-class.Rd index 08f1a13abdaa782b74eee659c28d608901112405..edf5664c4de8ca075f0a1a2709f292aad6b44b06 100644 --- a/man/pensionTable-class.Rd +++ b/man/pensionTable-class.Rd @@ -58,5 +58,7 @@ Correspondingly, the following transition probabilities can be given:\describe{ \item{\code{qgx}}{Death probability of whole group (derived from mortalityTable), irrespective of state} \item{\code{invalids.retire}}{Whether invalids retire like actives or stay invalid until death} + +\item{\code{probs.arrange}}{A function that takes the individual transition probabilities of all the components and creates one object (a data.frame or a list) that will be returned by the method \code{transitionProbabilities}. The default arranges all tables without further modification. However, some pension tables (like the german Heubeck table) require the total mortality to be recalculated from the individual mortalities of actives and disabled. In this case, the function assigned to this slot will also calculate that total probability.} }} diff --git a/man/pensionTables.list.Rd b/man/pensionTables.list.Rd index ae730b48ef3bee8b5d953f93b71fa44ac134e1eb..5fd37d0a1fd8e152f166ab25604a9c22d3bf4e95 100644 --- a/man/pensionTables.list.Rd +++ b/man/pensionTables.list.Rd @@ -5,15 +5,17 @@ \title{List all available sets of pension tables provided by the \link[MortalityTables]{MortalityTables-package} package An existing pension table can then be loaded with \link{pensionTables.load}.} \usage{ -pensionTables.list(pattern = "*", package = c("MortalityTables", - "MortalityTablesPrivate")) +pensionTables.list( + pattern = "*", + package = c("^MortalityTables", "^PensionTables") +) } \arguments{ -\item{pattern}{Restrict the results only to pension table sets that match the pattern (default: "*" to show all sets)} +\item{pattern}{Restrict the results only to pension table sets that match the pattern with wildcards (default: "*" to show all sets)} \item{package}{The package that contains the desired dataset in its \code{extdata/} directory. Defaults to the "MortalityTables" package. -Multiple packages can be given as a vector.} +Multiple packages can be given as a vector, even using regular expressions.} } \description{ List all available sets of pension tables provided by the \link[MortalityTables]{MortalityTables-package} package diff --git a/man/pensionTables.load.Rd b/man/pensionTables.load.Rd index 14e93653f8a2427f28ab164feb3671f5d0c7e6dc..79d7955ea4e8e62a91c08a2ecc259da47b77b7b0 100644 --- a/man/pensionTables.load.Rd +++ b/man/pensionTables.load.Rd @@ -4,8 +4,7 @@ \alias{pensionTables.load} \title{Load a named set of pension tables provided by the \link{MortalityTables} package} \usage{ -pensionTables.load(dataset, package = c("MortalityTables", - "MortalityTablesPrivate")) +pensionTables.load(dataset, package = c("^MortalityTables", "^PensionTables")) } \arguments{ \item{dataset}{The set of lifpensione tables to be loaded. A list of all available @@ -13,8 +12,9 @@ data sets is provided by the function \code{\link{pensionTables.list}}. Wildcards (*) are allowed to match and load multiple datasets.} \item{package}{The package that contains the dataset in its \code{extdata/} - directory. Defaults to the "MortalityTables" package. - Multiple packages can be given as a vector. + directory. Defaults to all packages starting with names that + start with "MortalityTables" or "PensionTables". + Multiple packages can be given as a vector, even using regular expressions. pensionTables.list() pensionTables.load("*") diff --git a/man/periodDeathProbabilities.Rd b/man/periodDeathProbabilities.Rd index d951b9522d408f22acbf023f1bb70bdaf2e40593..6ba2b39abbfae0bd27d488cb9bf2c276d06de81d 100644 --- a/man/periodDeathProbabilities.Rd +++ b/man/periodDeathProbabilities.Rd @@ -1,7 +1,6 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/periodDeathProbabilities.R, % R/mortalityTable.jointLives.R, R/mortalityTable.observed.R -\docType{methods} \name{periodDeathProbabilities} \alias{periodDeathProbabilities} \alias{periodDeathProbabilities,mortalityTable.period-method} @@ -16,28 +15,25 @@ observation year} \usage{ periodDeathProbabilities(object, ..., ages = NULL, Period = 1975) -\S4method{periodDeathProbabilities}{mortalityTable.period}(object, ..., - ages = NULL, Period = 1975) +\S4method{periodDeathProbabilities}{mortalityTable.period}(object, ..., ages = NULL, Period = 1975) -\S4method{periodDeathProbabilities}{mortalityTable.ageShift}(object, ..., - ages = NULL, Period = 1975) +\S4method{periodDeathProbabilities}{mortalityTable.ageShift}(object, ..., ages = NULL, Period = 1975) +\S4method{periodDeathProbabilities}{mortalityTable.trendProjection}(object, ..., ages = NULL, Period = 1975) - \S4method{periodDeathProbabilities}{mortalityTable.trendProjection}(object, - ..., ages = NULL, Period = 1975) +\S4method{periodDeathProbabilities}{mortalityTable.improvementFactors}(object, ..., ages = NULL, Period = 1975) +\S4method{periodDeathProbabilities}{mortalityTable.mixed}(object, ..., ages = NULL, Period = 1975) - \S4method{periodDeathProbabilities}{mortalityTable.improvementFactors}(object, - ..., ages = NULL, Period = 1975) - -\S4method{periodDeathProbabilities}{mortalityTable.mixed}(object, ..., - ages = NULL, Period = 1975) - -\S4method{periodDeathProbabilities}{mortalityTable.jointLives}(object, ..., - ageDifferences = c(), ages = NULL, Period = 1975) +\S4method{periodDeathProbabilities}{mortalityTable.jointLives}( + object, + ..., + ageDifferences = c(), + ages = NULL, + Period = 1975 +) -\S4method{periodDeathProbabilities}{mortalityTable.observed}(object, ..., - ages = NULL, Period = 1975) +\S4method{periodDeathProbabilities}{mortalityTable.observed}(object, ..., ages = NULL, Period = 1975) } \arguments{ \item{object}{The life table object (class inherited from mortalityTable)} diff --git a/man/periodTransitionProbabilities.Rd b/man/periodTransitionProbabilities.Rd index d50a399dde8b19200e7b465a656f7572d3c5aaed..b38701d5045db76fa2bbdade2079c798d89ae3ea 100644 --- a/man/periodTransitionProbabilities.Rd +++ b/man/periodTransitionProbabilities.Rd @@ -1,6 +1,5 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/pensionTable.R -\docType{methods} \name{periodTransitionProbabilities} \alias{periodTransitionProbabilities} \alias{periodTransitionProbabilities,pensionTable-method} @@ -8,10 +7,16 @@ \usage{ periodTransitionProbabilities(object, ...) -\S4method{periodTransitionProbabilities}{pensionTable}(object, - Period = 2017, ..., ages = NULL, OverallMortality = FALSE, - retirement = NULL, invalids.retire = object@invalids.retire, - as.data.frame = TRUE) +\S4method{periodTransitionProbabilities}{pensionTable}( + object, + Period = 2017, + ..., + ages = NULL, + OverallMortality = FALSE, + retirement = NULL, + invalids.retire = object@invalids.retire, + as.data.frame = TRUE +) } \arguments{ \item{object}{A pension table object (instance of a \code{\linkS4class{pensionTable}} class)} diff --git a/man/plotMortalityTableComparisons.Rd b/man/plotMortalityTableComparisons.Rd index 89766de27971c7dc720caa88f3eb7d98a6076e8b..2b20192c2e3340c88a495140c72425d9f9234297 100644 --- a/man/plotMortalityTableComparisons.Rd +++ b/man/plotMortalityTableComparisons.Rd @@ -4,11 +4,22 @@ \alias{plotMortalityTableComparisons} \title{Plot multiple mortality tables (life tables) in one plot, relative to a given reference table} \usage{ -plotMortalityTableComparisons(data, ..., aes = NULL, ages = NULL, - xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL, title = "", - legend.position = c(0.9, 0.1), legend.justification = c(1, 0), - legend.title = "Sterbetafel", legend.key.width = unit(25, "mm"), - reference = NULL) +plotMortalityTableComparisons( + data, + ..., + aes = NULL, + ages = NULL, + xlim = NULL, + ylim = NULL, + xlab = NULL, + ylab = NULL, + title = "", + legend.position = c(0.9, 0.1), + legend.justification = c(1, 0), + legend.title = "Sterbetafel", + legend.key.width = unit(25, "mm"), + reference = NULL +) } \arguments{ \item{data}{First life table to be plotted. Either a \code{data.frame} generated by \code{makeQxDataFrame} or a \code{mortalityTable} object} diff --git a/man/plotMortalityTables.Rd b/man/plotMortalityTables.Rd index 892ef6ae912dfc83511de4e19e89b085cf3a499b..41018bc1c29bd4f74fe4da27cb1db4fbf1a4adb3 100644 --- a/man/plotMortalityTables.Rd +++ b/man/plotMortalityTables.Rd @@ -4,11 +4,22 @@ \alias{plotMortalityTables} \title{Plot multiple mortality tables (life tables) in one plot} \usage{ -plotMortalityTables(data, ..., aes = NULL, ages = NULL, - legend.title = "Sterbetafel", xlim = NULL, ylim = NULL, - xlab = NULL, ylab = NULL, title = "", legend.position = c(0.9, - 0.1), legend.justification = c(1, 0), legend.key.width = unit(25, - "mm"), log = TRUE) +plotMortalityTables( + data, + ..., + aes = NULL, + ages = NULL, + legend.title = "Sterbetafel", + xlim = NULL, + ylim = NULL, + xlab = NULL, + ylab = NULL, + title = "", + legend.position = c(0.9, 0.1), + legend.justification = c(1, 0), + legend.key.width = unit(25, "mm"), + log = TRUE +) } \arguments{ \item{data}{First life table to be plotted. Either a \code{data.frame} generated by \code{makeQxDataFrame} or a \code{mortalityTable} object} diff --git a/man/plotMortalityTrend.Rd b/man/plotMortalityTrend.Rd index fc77cc3f91e7463e33d14c80a38522825295032f..02e08765c928e53de872d7ef42652d2be8d2a827 100644 --- a/man/plotMortalityTrend.Rd +++ b/man/plotMortalityTrend.Rd @@ -4,10 +4,21 @@ \alias{plotMortalityTrend} \title{Plot the trends of multiple mortality tables (life tables) in one chart} \usage{ -plotMortalityTrend(data, ..., aes = NULL, ages = NULL, xlim = NULL, - ylim = NULL, xlab = NULL, ylab = NULL, title = "", - legend.position = c(0.9, 0.9), legend.justification = c(1, 1), - legend.title = "Sterbetafel", legend.key.width = unit(25, "mm")) +plotMortalityTrend( + data, + ..., + aes = NULL, + ages = NULL, + xlim = NULL, + ylim = NULL, + xlab = NULL, + ylab = NULL, + title = "", + legend.position = c(0.9, 0.9), + legend.justification = c(1, 1), + legend.title = "Sterbetafel", + legend.key.width = unit(25, "mm") +) } \arguments{ \item{data}{First life table to be plotted. Either a \code{data.frame} generated by \code{makeQxDataFrame} or a \code{mortalityTable} object} diff --git a/man/setLoading.Rd b/man/setLoading.Rd index 7581d4de81f685fb45eb0f4ffd62b55c9e5edfbd..927e6e2cb156e9669cb45e4254b13691a626c757 100644 --- a/man/setLoading.Rd +++ b/man/setLoading.Rd @@ -1,6 +1,5 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/setLoading.R -\docType{methods} \name{setLoading} \alias{setLoading} \alias{setLoading,mortalityTable-method} diff --git a/man/setModification.Rd b/man/setModification.Rd index 661d1dece767a807427eac177b014ae3310dd41c..933535e8a82cdc1b2cef331e1ac5f0159f2b5e58 100644 --- a/man/setModification.Rd +++ b/man/setModification.Rd @@ -1,14 +1,10 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/utilityFunctions.R, R/setModification.R -\docType{methods} -\name{mT.round,mortalityTable-method} -\alias{mT.round,mortalityTable-method} +% Please edit documentation in R/setModification.R +\name{setModification} \alias{setModification} \alias{setModification,mortalityTable-method} \title{Return a copy of the table with the given modification function added} \usage{ -\S4method{mT.round}{mortalityTable}(object, digits = 8) - setModification(object, modification = 0) \S4method{setModification}{mortalityTable}(object, modification = 0) @@ -23,8 +19,6 @@ Return a copy of the table with the given modification function added } \section{Methods (by class)}{ \itemize{ -\item \code{mortalityTable}: Return the life table with the given modification set - \item \code{mortalityTable}: Return the life table with the given modification set }} diff --git a/man/transitionProbabilities.Rd b/man/transitionProbabilities.Rd index e4f3846a32435d50f6af703ac2ff4ca3da6c9df0..73bab71a1394aeab63b0d3fb2d448b6db79e8b04 100644 --- a/man/transitionProbabilities.Rd +++ b/man/transitionProbabilities.Rd @@ -1,6 +1,5 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/pensionTable.R -\docType{methods} \name{transitionProbabilities} \alias{transitionProbabilities} \alias{transitionProbabilities,pensionTable-method} @@ -8,10 +7,17 @@ \usage{ transitionProbabilities(object, ...) -\S4method{transitionProbabilities}{pensionTable}(object, YOB = 1982, ..., - ages = NULL, OverallMortality = FALSE, Period = NULL, - retirement = NULL, invalids.retire = object@invalids.retire, - as.data.frame = TRUE) +\S4method{transitionProbabilities}{pensionTable}( + object, + YOB = 1982, + ..., + ages = NULL, + OverallMortality = FALSE, + Period = NULL, + retirement = NULL, + invalids.retire = object@invalids.retire, + as.data.frame = TRUE +) } \arguments{ \item{object}{A pension table object (instance of a \code{\linkS4class{pensionTable}} class)} diff --git a/man/undampenTrend.Rd b/man/undampenTrend.Rd index 5122bbfc63632f5f490ff80cd0f2b01bc4660693..2886094c77ac6477d0fcc87bca7efd1dd5e7324d 100644 --- a/man/undampenTrend.Rd +++ b/man/undampenTrend.Rd @@ -1,6 +1,5 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/undampenTrend.R -\docType{methods} \name{undampenTrend} \alias{undampenTrend} \alias{undampenTrend,mortalityTable.trendProjection-method} diff --git a/man/whittaker.mortalityTable.Rd b/man/whittaker.mortalityTable.Rd index e2304ff41b2c65a39475d075154fe62f7763c4f6..391a9ae86604e9932f82c11984672616cff47ae8 100644 --- a/man/whittaker.mortalityTable.Rd +++ b/man/whittaker.mortalityTable.Rd @@ -4,8 +4,15 @@ \alias{whittaker.mortalityTable} \title{Smooth a life table using the Whittaker-Henderson method, intepolation possibly missing values} \usage{ -whittaker.mortalityTable(table, lambda = 10, d = 2, - name.postfix = ", smoothed", ..., weights = NULL, log = TRUE) +whittaker.mortalityTable( + table, + lambda = 10, + d = 2, + name.postfix = ", smoothed", + ..., + weights = NULL, + log = TRUE +) } \arguments{ \item{table}{Mortality table to be graduated. Must be an instance of a diff --git a/vignettes/using-the-mortalityTables-package.R b/vignettes/using-the-mortalityTables-package.R index e3225ffcd48b38c73660a016b57a902e2e4a6b38..7e964366e0c6e73f3e911073d568ca24ebf6ec89 100644 --- a/vignettes/using-the-mortalityTables-package.R +++ b/vignettes/using-the-mortalityTables-package.R @@ -1,10 +1,10 @@ -## ----echo = FALSE-------------------------------------------------------- +## ----echo = FALSE------------------------------------------------------------- knitr::opts_chunk$set(collapse = TRUE, comment = "#>") -## ----message=FALSE------------------------------------------------------- +## ----message=FALSE------------------------------------------------------------ library("MortalityTables") -## ------------------------------------------------------------------------ +## ----------------------------------------------------------------------------- # list all available data sets mortalityTables.list() @@ -14,10 +14,11 @@ mortalityTables.list("Austria_*") # Load the German annuity table DAV 2004-R mortalityTables.load("Germany_Annuities_DAV2004R") -# Load all Austrian data sets -mortalityTables.load("Austria_*") +# Load all Austrian annuity data sets +mortalityTables.load("Austria_Annuities*") +mortalityTables.load("Austria_Census") -## ------------------------------------------------------------------------ +## ----------------------------------------------------------------------------- # Log-linear plot comparing some Austrian census tables plot(mort.AT.census.1951.male, mort.AT.census.1991.male, mort.AT.census.2001.male, mort.AT.census.2011.male, @@ -28,7 +29,7 @@ plot(mort.AT.census.1951.male, mort.AT.census.1991.male, mort.AT.census.2001.male, reference = mort.AT.census.2011.male, legend.position = c(1,0.75), ylim = c(0,4)) -## ------------------------------------------------------------------------ +## ----------------------------------------------------------------------------- # Comparison of two Austrian annuity tables for birth year 1977 plot(AVOe1996R.male, AVOe2005R.male, YOB = 1977, title = "Comparison for YOB=1977") @@ -36,7 +37,7 @@ plot(AVOe1996R.male, AVOe2005R.male, YOB = 1977, title = "Comparison for YOB=197 plot(AVOe1996R.male, AVOe2005R.male, Period = 2020, title = "Comparison for observation year 2020") -## ----message=FALSE------------------------------------------------------- +## ----message=FALSE------------------------------------------------------------ mortalityTables.load("Austria_Annuities") # Get the cohort death probabilities for Austrian Annuitants born in 1977: qx.coh1977 = deathProbabilities(AVOe2005R.male, YOB = 1977) @@ -44,7 +45,7 @@ qx.coh1977 = deathProbabilities(AVOe2005R.male, YOB = 1977) # Get the period death probabilities for Austrian Annuitants observed in the year 2020: qx.per2020 = periodDeathProbabilities(AVOe2005R.male, Period = 2020) -## ------------------------------------------------------------------------ +## ----------------------------------------------------------------------------- # Get the cohort death probabilities for Austrian Annuitants born in 1977 as a mortalityTable.period object: table.coh1977 = getCohortTable(AVOe2005R.male, YOB = 1977) @@ -55,13 +56,13 @@ table.per2020 = getPeriodTable(AVOe2005R.male, Period = 2020) plot(table.coh1977, table.per2020, title = "Comparison of cohort 1977 with Period 2020", legend.position = c(1,0)) -## ------------------------------------------------------------------------ +## ----------------------------------------------------------------------------- lt = mortalityTable.period(name = "Sample period lifetable", ages = 1:99, deathProbs = exp(-(99:1)/10)) plot(lt, title = "Simple log-linear period mortality table") deathProbabilities(lt) -## ------------------------------------------------------------------------ +## ----------------------------------------------------------------------------- atPlus2 = mortalityTable.trendProjection( name = "Austrian Census Males 2011, 2% yearly trend", baseYear = 2011, @@ -70,7 +71,7 @@ atPlus2 = mortalityTable.trendProjection( trend = rep(0.02, length(ages(mort.AT.census.2011.male))) ) -## ------------------------------------------------------------------------ +## ----------------------------------------------------------------------------- atPlus2.damp = mortalityTable.trendProjection( name = "Austrian M '11, 2% yearly, damping until 2111", baseYear = 2011, @@ -85,7 +86,7 @@ atPlus2.damp = mortalityTable.trendProjection( plot(mort.AT.census.2011.male, atPlus2, atPlus2.damp, YOB = 2011, legend.position = c(0.8,0.75)) -## ------------------------------------------------------------------------ +## ----------------------------------------------------------------------------- atPlus2.damp2 = mortalityTable.trendProjection( name = "Austrian M '11, 2% yearly, 1% long-term", baseYear = 2011, @@ -104,7 +105,7 @@ atPlus2.damp2 = mortalityTable.trendProjection( plot(mort.AT.census.2011.male, atPlus2, atPlus2.damp, atPlus2.damp2, YOB = 2011, legend.position = c(0.8,0.75)) -## ------------------------------------------------------------------------ +## ----------------------------------------------------------------------------- baseTableShift = getCohortTable(atPlus2, YOB = 2011); baseTableShift@name = "Base table of the shift (YOB 2011)" @@ -131,20 +132,20 @@ ageShift(atShifted, YOB = 2021) plot(baseTableShift, atPlus2, atShifted, YOB = 2021, legend.position = c(0.8,0.75)) -## ------------------------------------------------------------------------ +## ----------------------------------------------------------------------------- b = AVOe2005R.female b@name = "Modified Copy" # only b is modified, not the original table b@modification = function(qx) pmax(qx, 0.01) plot(AVOe2005R.female, b, YOB = 2000) -## ------------------------------------------------------------------------ +## ----------------------------------------------------------------------------- AVOe2005R.female.sec = setLoading(AVOe2005R.female, loading = 0.1); # Make sure the modified table has a new name, otherwise plots might break AVOe2005R.female.sec@name = "Table with 10% loading" plot(AVOe2005R.female, AVOe2005R.female.sec, title = "Original and modified table") -## ------------------------------------------------------------------------ +## ----------------------------------------------------------------------------- AVOe2005R.female.mod = setModification(AVOe2005R.female, modification = function(qx) pmax(0.03, qx)); # Make sure the modified table has a new name, otherwise plots might break AVOe2005R.female.mod@name = "Modified table (lower bound of 3%)" diff --git a/vignettes/using-the-mortalityTables-package.Rmd b/vignettes/using-the-mortalityTables-package.Rmd index 235911ba3a5c9811669fcbb8307fb3f4006510d0..6648b3cbffe4ae3b0a513b5fd850bc9131bd2309 100644 --- a/vignettes/using-the-mortalityTables-package.Rmd +++ b/vignettes/using-the-mortalityTables-package.Rmd @@ -9,7 +9,7 @@ output: fig_width: 7 fig_height: 5 vignette: > - %\VignetteIndexEntry{MortalityTables} + %\VignetteIndexEntry{Using the MortalityTables Package} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- @@ -19,7 +19,7 @@ knitr::opts_chunk$set(collapse = TRUE, comment = "#>") ``` The MortalityTables package provides the `mortalityTable` base class and -some derived classes to handle diffferent types of mortality tables (also +some derived classes to handle different types of mortality tables (also called life tables), mainly used for life insurance. Additionally it provides a plot function to compare multiple life tables either directly using the absolute mortalities in @@ -90,8 +90,9 @@ mortalityTables.list("Austria_*") # Load the German annuity table DAV 2004-R mortalityTables.load("Germany_Annuities_DAV2004R") -# Load all Austrian data sets -mortalityTables.load("Austria_*") +# Load all Austrian annuity data sets +mortalityTables.load("Austria_Annuities*") +mortalityTables.load("Austria_Census") ``` @@ -412,6 +413,12 @@ AVOe2005R.female.mod@name = "Modified table (lower bound of 3%)" plot(AVOe2005R.female, AVOe2005R.female.mod, title = "Original and modified table") ``` +## Creating mortality tables from data and modifying them using various helper functions + +The package \code{MortalityTables} not only provides the data structures and some +examples of mortality tables, it also provides several functions to modify +existing tables. In particular, the functions available provide + ## Pension Tables Pension tables generalize mortality tables in that the state space is increased from two states (alive / dead) to four states (active / invalidity or realy @@ -419,7 +426,8 @@ retirement / old age retirement / dead). As a consequence, there is no longer just one transition probability, but multiple. Possible states are: -* active: healty, no pension, typically paying some kin of premium + +* active: healty, no pension, typically paying some kind of premium * incapacity: disablity pension (in most cases permanent), not working, early pension * retirement: old age pension, usually starting with a fixed age * dead @@ -428,6 +436,7 @@ Possible states are: Correspondingly, the `pensionTable` class offers the following slots describing transition probabilities for the corresponding state transitions (by a `mortalityTable`-derived object): + * `qxaa`: death probability of actives (active -> dead) * `ix`: invalidity probability (active -> incapacity) * `qix`: death probability of invalid (invalid -> dead) @@ -443,6 +452,7 @@ All functions that handle `mortalityTable` object can be used with these slots. Additionally, the following functions are provided to obtain the set of all transition probabilities in one data frame: + * `transitionProbabilities(pension_table, YOB)` * `periodTransitionProbabilities(pension_table, Period)` diff --git a/vignettes/using-the-mortalityTables-package.html b/vignettes/using-the-mortalityTables-package.html index 585160e214ff6cc502bdc62a8031e1143a593407..50f83bfcd5c0ff91dc5a3a6973d120f25a26ecdc 100644 --- a/vignettes/using-the-mortalityTables-package.html +++ b/vignettes/using-the-mortalityTables-package.html @@ -1,65 +1,314 @@ <!DOCTYPE html> -<html xmlns="http://www.w3.org/1999/xhtml"> +<html> <head> <meta charset="utf-8" /> -<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="generator" content="pandoc" /> +<meta http-equiv="X-UA-Compatible" content="IE=EDGE" /> -<meta name="viewport" content="width=device-width, initial-scale=1"> +<meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="author" content="Reinhold Kainhofer, reinhold@kainhofer.com" /> -<meta name="date" content="2018-05-20" /> +<meta name="date" content="2020-08-11" /> <title>Using the MortalityTables Package</title> +<script>// Hide empty <a> tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) --> +// v0.0.1 +// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020. + +document.addEventListener('DOMContentLoaded', function() { + const codeList = document.getElementsByClassName("sourceCode"); + for (var i = 0; i < codeList.length; i++) { + var linkList = codeList[i].getElementsByTagName('a'); + for (var j = 0; j < linkList.length; j++) { + if (linkList[j].innerHTML === "") { + linkList[j].setAttribute('aria-hidden', 'true'); + } + } + } +}); +</script> <style type="text/css">code{white-space: pre;}</style> -<style type="text/css"> -div.sourceCode { overflow-x: auto; } -table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode { - margin: 0; padding: 0; vertical-align: baseline; border: none; } -table.sourceCode { width: 100%; line-height: 100%; } -td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; } -td.sourceCode { padding-left: 5px; } -code > span.kw { color: #007020; font-weight: bold; } /* Keyword */ -code > span.dt { color: #902000; } /* DataType */ -code > span.dv { color: #40a070; } /* DecVal */ -code > span.bn { color: #40a070; } /* BaseN */ -code > span.fl { color: #40a070; } /* Float */ -code > span.ch { color: #4070a0; } /* Char */ -code > span.st { color: #4070a0; } /* String */ -code > span.co { color: #60a0b0; font-style: italic; } /* Comment */ -code > span.ot { color: #007020; } /* Other */ -code > span.al { color: #ff0000; font-weight: bold; } /* Alert */ -code > span.fu { color: #06287e; } /* Function */ -code > span.er { color: #ff0000; font-weight: bold; } /* Error */ -code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */ -code > span.cn { color: #880000; } /* Constant */ -code > span.sc { color: #4070a0; } /* SpecialChar */ -code > span.vs { color: #4070a0; } /* VerbatimString */ -code > span.ss { color: #bb6688; } /* SpecialString */ -code > span.im { } /* Import */ -code > span.va { color: #19177c; } /* Variable */ -code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */ -code > span.op { color: #666666; } /* Operator */ -code > span.bu { } /* BuiltIn */ -code > span.ex { } /* Extension */ -code > span.pp { color: #bc7a00; } /* Preprocessor */ -code > span.at { color: #7d9029; } /* Attribute */ -code > span.do { color: #ba2121; font-style: italic; } /* Documentation */ -code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */ -code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */ -code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */ +<style type="text/css" data-origin="pandoc"> +code.sourceCode > span { display: inline-block; line-height: 1.25; } +code.sourceCode > span { color: inherit; text-decoration: inherit; } +code.sourceCode > span:empty { height: 1.2em; } +.sourceCode { overflow: visible; } +code.sourceCode { white-space: pre; position: relative; } +div.sourceCode { margin: 1em 0; } +pre.sourceCode { margin: 0; } +@media screen { +div.sourceCode { overflow: auto; } +} +@media print { +code.sourceCode { white-space: pre-wrap; } +code.sourceCode > span { text-indent: -5em; padding-left: 5em; } +} +pre.numberSource code + { counter-reset: source-line 0; } +pre.numberSource code > span + { position: relative; left: -4em; counter-increment: source-line; } +pre.numberSource code > span > a:first-child::before + { content: counter(source-line); + position: relative; left: -1em; text-align: right; vertical-align: baseline; + border: none; display: inline-block; + -webkit-touch-callout: none; -webkit-user-select: none; + -khtml-user-select: none; -moz-user-select: none; + -ms-user-select: none; user-select: none; + padding: 0 4px; width: 4em; + color: #aaaaaa; + } +pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; } +div.sourceCode + { } +@media screen { +code.sourceCode > span > a:first-child::before { text-decoration: underline; } +} +code span.al { color: #ff0000; font-weight: bold; } /* Alert */ +code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */ +code span.at { color: #7d9029; } /* Attribute */ +code span.bn { color: #40a070; } /* BaseN */ +code span.bu { } /* BuiltIn */ +code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */ +code span.ch { color: #4070a0; } /* Char */ +code span.cn { color: #880000; } /* Constant */ +code span.co { color: #60a0b0; font-style: italic; } /* Comment */ +code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */ +code span.do { color: #ba2121; font-style: italic; } /* Documentation */ +code span.dt { color: #902000; } /* DataType */ +code span.dv { color: #40a070; } /* DecVal */ +code span.er { color: #ff0000; font-weight: bold; } /* Error */ +code span.ex { } /* Extension */ +code span.fl { color: #40a070; } /* Float */ +code span.fu { color: #06287e; } /* Function */ +code span.im { } /* Import */ +code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */ +code span.kw { color: #007020; font-weight: bold; } /* Keyword */ +code span.op { color: #666666; } /* Operator */ +code span.ot { color: #007020; } /* Other */ +code span.pp { color: #bc7a00; } /* Preprocessor */ +code span.sc { color: #4070a0; } /* SpecialChar */ +code span.ss { color: #bb6688; } /* SpecialString */ +code span.st { color: #4070a0; } /* String */ +code span.va { color: #19177c; } /* Variable */ +code span.vs { color: #4070a0; } /* VerbatimString */ +code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */ + +</style> +<script> +// apply pandoc div.sourceCode style to pre.sourceCode instead +(function() { + var sheets = document.styleSheets; + for (var i = 0; i < sheets.length; i++) { + if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue; + try { var rules = sheets[i].cssRules; } catch (e) { continue; } + for (var j = 0; j < rules.length; j++) { + var rule = rules[j]; + // check if there is a div.sourceCode rule + if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") continue; + var style = rule.style.cssText; + // check if color or background-color is set + if (rule.style.color === '' && rule.style.backgroundColor === '') continue; + // replace div.sourceCode by a pre.sourceCode rule + sheets[i].deleteRule(j); + sheets[i].insertRule('pre.sourceCode{' + style + '}', j); + } + } +})(); +</script> + + + +<style type="text/css">body { +background-color: #fff; +margin: 1em auto; +max-width: 700px; +overflow: visible; +padding-left: 2em; +padding-right: 2em; +font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif; +font-size: 14px; +line-height: 1.35; +} +#TOC { +clear: both; +margin: 0 0 10px 10px; +padding: 4px; +width: 400px; +border: 1px solid #CCCCCC; +border-radius: 5px; +background-color: #f6f6f6; +font-size: 13px; +line-height: 1.3; +} +#TOC .toctitle { +font-weight: bold; +font-size: 15px; +margin-left: 5px; +} +#TOC ul { +padding-left: 40px; +margin-left: -1.5em; +margin-top: 5px; +margin-bottom: 5px; +} +#TOC ul ul { +margin-left: -2em; +} +#TOC li { +line-height: 16px; +} +table { +margin: 1em auto; +border-width: 1px; +border-color: #DDDDDD; +border-style: outset; +border-collapse: collapse; +} +table th { +border-width: 2px; +padding: 5px; +border-style: inset; +} +table td { +border-width: 1px; +border-style: inset; +line-height: 18px; +padding: 5px 5px; +} +table, table th, table td { +border-left-style: none; +border-right-style: none; +} +table thead, table tr.even { +background-color: #f7f7f7; +} +p { +margin: 0.5em 0; +} +blockquote { +background-color: #f6f6f6; +padding: 0.25em 0.75em; +} +hr { +border-style: solid; +border: none; +border-top: 1px solid #777; +margin: 28px 0; +} +dl { +margin-left: 0; +} +dl dd { +margin-bottom: 13px; +margin-left: 13px; +} +dl dt { +font-weight: bold; +} +ul { +margin-top: 0; +} +ul li { +list-style: circle outside; +} +ul ul { +margin-bottom: 0; +} +pre, code { +background-color: #f7f7f7; +border-radius: 3px; +color: #333; +white-space: pre-wrap; +} +pre { +border-radius: 3px; +margin: 5px 0px 10px 0px; +padding: 10px; +} +pre:not([class]) { +background-color: #f7f7f7; +} +code { +font-family: Consolas, Monaco, 'Courier New', monospace; +font-size: 85%; +} +p > code, li > code { +padding: 2px 0px; +} +div.figure { +text-align: center; +} +img { +background-color: #FFFFFF; +padding: 2px; +border: 1px solid #DDDDDD; +border-radius: 3px; +border: 1px solid #CCCCCC; +margin: 0 5px; +} +h1 { +margin-top: 0; +font-size: 35px; +line-height: 40px; +} +h2 { +border-bottom: 4px solid #f7f7f7; +padding-top: 10px; +padding-bottom: 2px; +font-size: 145%; +} +h3 { +border-bottom: 2px solid #f7f7f7; +padding-top: 10px; +font-size: 120%; +} +h4 { +border-bottom: 1px solid #f7f7f7; +margin-left: 8px; +font-size: 105%; +} +h5, h6 { +border-bottom: 1px solid #ccc; +font-size: 105%; +} +a { +color: #0033dd; +text-decoration: none; +} +a:hover { +color: #6666ff; } +a:visited { +color: #800080; } +a:visited:hover { +color: #BB00BB; } +a[href^="http:"] { +text-decoration: underline; } +a[href^="https:"] { +text-decoration: underline; } + +code > span.kw { color: #555; font-weight: bold; } +code > span.dt { color: #902000; } +code > span.dv { color: #40a070; } +code > span.bn { color: #d14; } +code > span.fl { color: #d14; } +code > span.ch { color: #d14; } +code > span.st { color: #d14; } +code > span.co { color: #888888; font-style: italic; } +code > span.ot { color: #007020; } +code > span.al { color: #ff0000; font-weight: bold; } +code > span.fu { color: #900; font-weight: bold; } +code > span.er { color: #a61717; background-color: #e3d2d2; } </style> -<link href="data:text/css;charset=utf-8,body%20%7B%0Abackground%2Dcolor%3A%20%23fff%3B%0Amargin%3A%201em%20auto%3B%0Amax%2Dwidth%3A%20700px%3B%0Aoverflow%3A%20visible%3B%0Apadding%2Dleft%3A%202em%3B%0Apadding%2Dright%3A%202em%3B%0Afont%2Dfamily%3A%20%22Open%20Sans%22%2C%20%22Helvetica%20Neue%22%2C%20Helvetica%2C%20Arial%2C%20sans%2Dserif%3B%0Afont%2Dsize%3A%2014px%3B%0Aline%2Dheight%3A%201%2E35%3B%0A%7D%0A%23header%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0A%23TOC%20%7B%0Aclear%3A%20both%3B%0Amargin%3A%200%200%2010px%2010px%3B%0Apadding%3A%204px%3B%0Awidth%3A%20400px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Aborder%2Dradius%3A%205px%3B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Afont%2Dsize%3A%2013px%3B%0Aline%2Dheight%3A%201%2E3%3B%0A%7D%0A%23TOC%20%2Etoctitle%20%7B%0Afont%2Dweight%3A%20bold%3B%0Afont%2Dsize%3A%2015px%3B%0Amargin%2Dleft%3A%205px%3B%0A%7D%0A%23TOC%20ul%20%7B%0Apadding%2Dleft%3A%2040px%3B%0Amargin%2Dleft%3A%20%2D1%2E5em%3B%0Amargin%2Dtop%3A%205px%3B%0Amargin%2Dbottom%3A%205px%3B%0A%7D%0A%23TOC%20ul%20ul%20%7B%0Amargin%2Dleft%3A%20%2D2em%3B%0A%7D%0A%23TOC%20li%20%7B%0Aline%2Dheight%3A%2016px%3B%0A%7D%0Atable%20%7B%0Amargin%3A%201em%20auto%3B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dcolor%3A%20%23DDDDDD%3B%0Aborder%2Dstyle%3A%20outset%3B%0Aborder%2Dcollapse%3A%20collapse%3B%0A%7D%0Atable%20th%20%7B%0Aborder%2Dwidth%3A%202px%3B%0Apadding%3A%205px%3B%0Aborder%2Dstyle%3A%20inset%3B%0A%7D%0Atable%20td%20%7B%0Aborder%2Dwidth%3A%201px%3B%0Aborder%2Dstyle%3A%20inset%3B%0Aline%2Dheight%3A%2018px%3B%0Apadding%3A%205px%205px%3B%0A%7D%0Atable%2C%20table%20th%2C%20table%20td%20%7B%0Aborder%2Dleft%2Dstyle%3A%20none%3B%0Aborder%2Dright%2Dstyle%3A%20none%3B%0A%7D%0Atable%20thead%2C%20table%20tr%2Eeven%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Ap%20%7B%0Amargin%3A%200%2E5em%200%3B%0A%7D%0Ablockquote%20%7B%0Abackground%2Dcolor%3A%20%23f6f6f6%3B%0Apadding%3A%200%2E25em%200%2E75em%3B%0A%7D%0Ahr%20%7B%0Aborder%2Dstyle%3A%20solid%3B%0Aborder%3A%20none%3B%0Aborder%2Dtop%3A%201px%20solid%20%23777%3B%0Amargin%3A%2028px%200%3B%0A%7D%0Adl%20%7B%0Amargin%2Dleft%3A%200%3B%0A%7D%0Adl%20dd%20%7B%0Amargin%2Dbottom%3A%2013px%3B%0Amargin%2Dleft%3A%2013px%3B%0A%7D%0Adl%20dt%20%7B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0Aul%20%7B%0Amargin%2Dtop%3A%200%3B%0A%7D%0Aul%20li%20%7B%0Alist%2Dstyle%3A%20circle%20outside%3B%0A%7D%0Aul%20ul%20%7B%0Amargin%2Dbottom%3A%200%3B%0A%7D%0Apre%2C%20code%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0Aborder%2Dradius%3A%203px%3B%0Acolor%3A%20%23333%3B%0Awhite%2Dspace%3A%20pre%2Dwrap%3B%20%0A%7D%0Apre%20%7B%0Aborder%2Dradius%3A%203px%3B%0Amargin%3A%205px%200px%2010px%200px%3B%0Apadding%3A%2010px%3B%0A%7D%0Apre%3Anot%28%5Bclass%5D%29%20%7B%0Abackground%2Dcolor%3A%20%23f7f7f7%3B%0A%7D%0Acode%20%7B%0Afont%2Dfamily%3A%20Consolas%2C%20Monaco%2C%20%27Courier%20New%27%2C%20monospace%3B%0Afont%2Dsize%3A%2085%25%3B%0A%7D%0Ap%20%3E%20code%2C%20li%20%3E%20code%20%7B%0Apadding%3A%202px%200px%3B%0A%7D%0Adiv%2Efigure%20%7B%0Atext%2Dalign%3A%20center%3B%0A%7D%0Aimg%20%7B%0Abackground%2Dcolor%3A%20%23FFFFFF%3B%0Apadding%3A%202px%3B%0Aborder%3A%201px%20solid%20%23DDDDDD%3B%0Aborder%2Dradius%3A%203px%3B%0Aborder%3A%201px%20solid%20%23CCCCCC%3B%0Amargin%3A%200%205px%3B%0A%7D%0Ah1%20%7B%0Amargin%2Dtop%3A%200%3B%0Afont%2Dsize%3A%2035px%3B%0Aline%2Dheight%3A%2040px%3B%0A%7D%0Ah2%20%7B%0Aborder%2Dbottom%3A%204px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Apadding%2Dbottom%3A%202px%3B%0Afont%2Dsize%3A%20145%25%3B%0A%7D%0Ah3%20%7B%0Aborder%2Dbottom%3A%202px%20solid%20%23f7f7f7%3B%0Apadding%2Dtop%3A%2010px%3B%0Afont%2Dsize%3A%20120%25%3B%0A%7D%0Ah4%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23f7f7f7%3B%0Amargin%2Dleft%3A%208px%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Ah5%2C%20h6%20%7B%0Aborder%2Dbottom%3A%201px%20solid%20%23ccc%3B%0Afont%2Dsize%3A%20105%25%3B%0A%7D%0Aa%20%7B%0Acolor%3A%20%230033dd%3B%0Atext%2Ddecoration%3A%20none%3B%0A%7D%0Aa%3Ahover%20%7B%0Acolor%3A%20%236666ff%3B%20%7D%0Aa%3Avisited%20%7B%0Acolor%3A%20%23800080%3B%20%7D%0Aa%3Avisited%3Ahover%20%7B%0Acolor%3A%20%23BB00BB%3B%20%7D%0Aa%5Bhref%5E%3D%22http%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0Aa%5Bhref%5E%3D%22https%3A%22%5D%20%7B%0Atext%2Ddecoration%3A%20underline%3B%20%7D%0A%0Acode%20%3E%20span%2Ekw%20%7B%20color%3A%20%23555%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Edt%20%7B%20color%3A%20%23902000%3B%20%7D%20%0Acode%20%3E%20span%2Edv%20%7B%20color%3A%20%2340a070%3B%20%7D%20%0Acode%20%3E%20span%2Ebn%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Efl%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Ech%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Est%20%7B%20color%3A%20%23d14%3B%20%7D%20%0Acode%20%3E%20span%2Eco%20%7B%20color%3A%20%23888888%3B%20font%2Dstyle%3A%20italic%3B%20%7D%20%0Acode%20%3E%20span%2Eot%20%7B%20color%3A%20%23007020%3B%20%7D%20%0Acode%20%3E%20span%2Eal%20%7B%20color%3A%20%23ff0000%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%0Acode%20%3E%20span%2Efu%20%7B%20color%3A%20%23900%3B%20font%2Dweight%3A%20bold%3B%20%7D%20%20code%20%3E%20span%2Eer%20%7B%20color%3A%20%23a61717%3B%20background%2Dcolor%3A%20%23e3d2d2%3B%20%7D%20%0A" rel="stylesheet" type="text/css" /> </head> @@ -69,8 +318,8 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf <h1 class="title toc-ignore">Using the MortalityTables Package</h1> -<h4 class="author"><em>Reinhold Kainhofer, <a href="mailto:reinhold@kainhofer.com">reinhold@kainhofer.com</a></em></h4> -<h4 class="date"><em>2018-05-20</em></h4> +<h4 class="author">Reinhold Kainhofer, <a href="mailto:reinhold@kainhofer.com" class="email">reinhold@kainhofer.com</a></h4> +<h4 class="date">2020-08-11</h4> <div id="TOC"> @@ -93,11 +342,12 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf <li><a href="#adding-a-security-loading-to-the-raw-probabilities">Adding a security loading to the raw probabilities</a></li> <li><a href="#adding-a-modification-to-the-raw-probabilities">Adding a modification to the raw probabilities</a></li> </ul></li> +<li><a href="#creating-mortality-tables-from-data-and-modifying-them-using-various-helper-functions">Creating mortality tables from data and modifying them using various helper functions</a></li> <li><a href="#pension-tables">Pension Tables</a></li> </ul> </div> -<p>The MortalityTables package provides the <code>mortalityTable</code> base class and some derived classes to handle diffferent types of mortality tables (also called life tables), mainly used for life insurance. Additionally it provides a plot function to compare multiple life tables either directly using the absolute mortalities in log-linear plots or using relative mortalities as percentages of a given reference table.</p> +<p>The MortalityTables package provides the <code>mortalityTable</code> base class and some derived classes to handle different types of mortality tables (also called life tables), mainly used for life insurance. Additionally it provides a plot function to compare multiple life tables either directly using the absolute mortalities in log-linear plots or using relative mortalities as percentages of a given reference table.</p> <div id="types-of-life-tables" class="section level2"> <h2>Types of Life Tables</h2> <p>Provided types of mortality tables are:</p> @@ -155,64 +405,53 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf </div> <div id="loading-the-mortalitytables-package" class="section level2"> <h2>Loading the MortalityTables package</h2> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(<span class="st">"MortalityTables"</span>)</code></pre></div> +<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1"></a><span class="kw">library</span>(<span class="st">"MortalityTables"</span>)</span></code></pre></div> </div> <div id="provided-data-sets" class="section level2"> <h2>Provided Data Sets</h2> <p>The package provides several real-life life tables published by census bureaus and actuarial associations around the world. You can use the function <code>mortalityTables.list</code> to list all available datasets (if no argument is given) or all datasets that match the given pattern (wildcard character is *). You can then use <code>mortalityTables.load</code> to load either one single data set or all datasets that match the pattern.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># list all available data sets</span> -<span class="kw">mortalityTables.list</span>() -<span class="co">#> [1] "Austria_Annuities" </span> -<span class="co">#> [2] "Austria_Annuities_AVOe1996R" </span> -<span class="co">#> [3] "Austria_Annuities_AVOe2005R" </span> -<span class="co">#> [4] "Austria_Annuities_EROMF" </span> -<span class="co">#> [5] "Austria_Annuities_RR67" </span> -<span class="co">#> [6] "Austria_Census" </span> -<span class="co">#> [7] "Austria_Endowments_ADSt2426_2Lives"</span> -<span class="co">#> [8] "Austria_PopulationForecast" </span> -<span class="co">#> [9] "Germany_Annuities" </span> -<span class="co">#> [10] "Germany_Annuities_DAV1994R" </span> -<span class="co">#> [11] "Germany_Annuities_DAV2004R" </span> -<span class="co">#> [12] "Germany_Census" </span> -<span class="co">#> [13] "Germany_Endowments" </span> -<span class="co">#> [14] "Germany_Endowments_DAV1994T" </span> -<span class="co">#> [15] "Germany_Endowments_DAV2008T" </span> -<span class="co">#> [16] "USA_Annuities" </span> -<span class="co">#> [17] "USA_Annuities_1971IAM" </span> -<span class="co">#> [18] "USA_Annuities_1983a" </span> -<span class="co">#> [19] "USA_Annuities_1994GAR" </span> -<span class="co">#> [20] "USA_Annuities_2012IAM" </span> -<span class="co">#> [21] "USA_Annuities_Annuity2000"</span> - -<span class="co"># list all datasets for Austria</span> -<span class="kw">mortalityTables.list</span>(<span class="st">"Austria_*"</span>) -<span class="co">#> [1] "Austria_Annuities" </span> -<span class="co">#> [2] "Austria_Annuities_AVOe1996R" </span> -<span class="co">#> [3] "Austria_Annuities_AVOe2005R" </span> -<span class="co">#> [4] "Austria_Annuities_EROMF" </span> -<span class="co">#> [5] "Austria_Annuities_RR67" </span> -<span class="co">#> [6] "Austria_Census" </span> -<span class="co">#> [7] "Austria_Endowments_ADSt2426_2Lives"</span> -<span class="co">#> [8] "Austria_PopulationForecast"</span> - -<span class="co"># Load the German annuity table DAV 2004-R</span> -<span class="kw">mortalityTables.load</span>(<span class="st">"Germany_Annuities_DAV2004R"</span>) -<span class="co">#> Loading table dataset 'Germany_Annuities_DAV2004R'</span> - -<span class="co"># Load all Austrian data sets</span> -<span class="kw">mortalityTables.load</span>(<span class="st">"Austria_*"</span>) -<span class="co">#> Loading table dataset 'Austria_Annuities'</span> -<span class="co">#> Loading table dataset 'Austria_Annuities_AVOe1996R'</span> -<span class="co">#> Loading table dataset 'Austria_Annuities_AVOe2005R'</span> -<span class="co">#> Loading table dataset 'Austria_Annuities_EROMF'</span> -<span class="co">#> Loading table dataset 'Austria_Annuities_RR67'</span> -<span class="co">#> Loading table dataset 'Austria_Annuities_AVOe1996R'</span> -<span class="co">#> Loading table dataset 'Austria_Annuities_AVOe2005R'</span> -<span class="co">#> Loading table dataset 'Austria_Annuities_EROMF'</span> -<span class="co">#> Loading table dataset 'Austria_Annuities_RR67'</span> -<span class="co">#> Loading table dataset 'Austria_Census'</span> -<span class="co">#> Loading table dataset 'Austria_Endowments_ADSt2426_2Lives'</span> -<span class="co">#> Loading table dataset 'Austria_PopulationForecast'</span></code></pre></div> +<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1"></a><span class="co"># list all available data sets</span></span> +<span id="cb2-2"><a href="#cb2-2"></a><span class="kw">mortalityTables.list</span>()</span> +<span id="cb2-3"><a href="#cb2-3"></a><span class="co">#> [1] "Austria_Annuities" "Austria_Annuities_AVOe1996R" </span></span> +<span id="cb2-4"><a href="#cb2-4"></a><span class="co">#> [3] "Austria_Annuities_AVOe2005R" "Austria_Annuities_EROMF" </span></span> +<span id="cb2-5"><a href="#cb2-5"></a><span class="co">#> [5] "Austria_Annuities_RR67" "Austria_Census" </span></span> +<span id="cb2-6"><a href="#cb2-6"></a><span class="co">#> [7] "Austria_Endowments_ADSt2426_2Lives" "Austria_PopulationForecast" </span></span> +<span id="cb2-7"><a href="#cb2-7"></a><span class="co">#> [9] "Austria_PopulationMCMC" "Austria_PopulationObserved" </span></span> +<span id="cb2-8"><a href="#cb2-8"></a><span class="co">#> [11] "Germany_Annuities" "Germany_Annuities_DAV1994R" </span></span> +<span id="cb2-9"><a href="#cb2-9"></a><span class="co">#> [13] "Germany_Annuities_DAV2004R" "Germany_Census" </span></span> +<span id="cb2-10"><a href="#cb2-10"></a><span class="co">#> [15] "Germany_Endowments" "Germany_Endowments_DAV1994T" </span></span> +<span id="cb2-11"><a href="#cb2-11"></a><span class="co">#> [17] "Germany_Endowments_DAV2008T" "USA_Annuities" </span></span> +<span id="cb2-12"><a href="#cb2-12"></a><span class="co">#> [19] "USA_Annuities_1971IAM" "USA_Annuities_1983a" </span></span> +<span id="cb2-13"><a href="#cb2-13"></a><span class="co">#> [21] "USA_Annuities_1994GAR" "USA_Annuities_2012IAM" </span></span> +<span id="cb2-14"><a href="#cb2-14"></a><span class="co">#> [23] "USA_Annuities_Annuity2000" "Austria_PK-Bestand_2010-16" </span></span> +<span id="cb2-15"><a href="#cb2-15"></a><span class="co">#> [25] "Austria_VUGesamtbestand_2012-16"</span></span> +<span id="cb2-16"><a href="#cb2-16"></a></span> +<span id="cb2-17"><a href="#cb2-17"></a><span class="co"># list all datasets for Austria</span></span> +<span id="cb2-18"><a href="#cb2-18"></a><span class="kw">mortalityTables.list</span>(<span class="st">"Austria_*"</span>)</span> +<span id="cb2-19"><a href="#cb2-19"></a><span class="co">#> [1] "Austria_Annuities" "Austria_Annuities_AVOe1996R" </span></span> +<span id="cb2-20"><a href="#cb2-20"></a><span class="co">#> [3] "Austria_Annuities_AVOe2005R" "Austria_Annuities_EROMF" </span></span> +<span id="cb2-21"><a href="#cb2-21"></a><span class="co">#> [5] "Austria_Annuities_RR67" "Austria_Census" </span></span> +<span id="cb2-22"><a href="#cb2-22"></a><span class="co">#> [7] "Austria_Endowments_ADSt2426_2Lives" "Austria_PopulationForecast" </span></span> +<span id="cb2-23"><a href="#cb2-23"></a><span class="co">#> [9] "Austria_PopulationMCMC" "Austria_PopulationObserved" </span></span> +<span id="cb2-24"><a href="#cb2-24"></a><span class="co">#> [11] "Austria_PK-Bestand_2010-16" "Austria_VUGesamtbestand_2012-16"</span></span> +<span id="cb2-25"><a href="#cb2-25"></a></span> +<span id="cb2-26"><a href="#cb2-26"></a><span class="co"># Load the German annuity table DAV 2004-R</span></span> +<span id="cb2-27"><a href="#cb2-27"></a><span class="kw">mortalityTables.load</span>(<span class="st">"Germany_Annuities_DAV2004R"</span>)</span> +<span id="cb2-28"><a href="#cb2-28"></a><span class="co">#> Loading table dataset 'Germany_Annuities_DAV2004R'</span></span> +<span id="cb2-29"><a href="#cb2-29"></a></span> +<span id="cb2-30"><a href="#cb2-30"></a><span class="co"># Load all Austrian annuity data sets</span></span> +<span id="cb2-31"><a href="#cb2-31"></a><span class="kw">mortalityTables.load</span>(<span class="st">"Austria_Annuities*"</span>)</span> +<span id="cb2-32"><a href="#cb2-32"></a><span class="co">#> Loading table dataset 'Austria_Annuities'</span></span> +<span id="cb2-33"><a href="#cb2-33"></a><span class="co">#> Loading table dataset 'Austria_Annuities_AVOe1996R'</span></span> +<span id="cb2-34"><a href="#cb2-34"></a><span class="co">#> Loading table dataset 'Austria_Annuities_AVOe2005R'</span></span> +<span id="cb2-35"><a href="#cb2-35"></a><span class="co">#> Loading table dataset 'Austria_Annuities_EROMF'</span></span> +<span id="cb2-36"><a href="#cb2-36"></a><span class="co">#> Loading table dataset 'Austria_Annuities_RR67'</span></span> +<span id="cb2-37"><a href="#cb2-37"></a><span class="co">#> Loading table dataset 'Austria_Annuities_AVOe1996R'</span></span> +<span id="cb2-38"><a href="#cb2-38"></a><span class="co">#> Loading table dataset 'Austria_Annuities_AVOe2005R'</span></span> +<span id="cb2-39"><a href="#cb2-39"></a><span class="co">#> Loading table dataset 'Austria_Annuities_EROMF'</span></span> +<span id="cb2-40"><a href="#cb2-40"></a><span class="co">#> Loading table dataset 'Austria_Annuities_RR67'</span></span> +<span id="cb2-41"><a href="#cb2-41"></a><span class="kw">mortalityTables.load</span>(<span class="st">"Austria_Census"</span>)</span> +<span id="cb2-42"><a href="#cb2-42"></a><span class="co">#> Loading table dataset 'Austria_Census'</span></span></code></pre></div> <p>In the next few sections we will always use some of the provided life tables for demonstration purposes.</p> </div> <div id="working-with-life-table-objects" class="section level2"> @@ -238,29 +477,29 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf </dl></li> </ul> <p>These functionalities are also combined into the S3 plot function for the mortalityTable class, so you can usually just call plot on the mortality tables. If the <code>trend = TRUE</code> argument is given, <code>plotMortalityTrend</code> is used, if the <code>reference</code> argument is given, <code>plotMortalityTableComparisons</code> is used, otherwise <code>plotMortalityTables</code> is called.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Log-linear plot comparing some Austrian census tables</span> -<span class="kw">plot</span>(mort.AT.census.<span class="fl">1951.</span>male, mort.AT.census.<span class="fl">1991.</span>male, - mort.AT.census.<span class="fl">2001.</span>male, mort.AT.census.<span class="fl">2011.</span>male, - <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="dv">1</span>,<span class="dv">0</span>))</code></pre></div> -<p><img src="" /><!-- --></p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"> -<span class="co"># Relative death probabilities in percentage of the latest census</span> -<span class="kw">plot</span>(mort.AT.census.<span class="fl">1951.</span>male, mort.AT.census.<span class="fl">1991.</span>male, - mort.AT.census.<span class="fl">2001.</span>male, - <span class="dt">reference =</span> mort.AT.census.<span class="fl">2011.</span>male, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="dv">1</span>,<span class="fl">0.75</span>), <span class="dt">ylim =</span> <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">4</span>)) -<span class="co">#> Warning in normalize_deathProbabilities(if (is.data.frame(t@data$dim)</span> -<span class="co">#> || : Reference mortality table does not contain ages</span> -<span class="co">#> 101102103104105106107108109110111112 required for normalization. These ages</span> -<span class="co">#> will not be normalized!</span></code></pre></div> -<p><img src="" /><!-- --></p> +<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1"></a><span class="co"># Log-linear plot comparing some Austrian census tables</span></span> +<span id="cb3-2"><a href="#cb3-2"></a><span class="kw">plot</span>(mort.AT.census.<span class="fl">1951.</span>male, mort.AT.census.<span class="fl">1991.</span>male, </span> +<span id="cb3-3"><a href="#cb3-3"></a> mort.AT.census.<span class="fl">2001.</span>male, mort.AT.census.<span class="fl">2011.</span>male, </span> +<span id="cb3-4"><a href="#cb3-4"></a> <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="dv">1</span>,<span class="dv">0</span>))</span></code></pre></div> +<p><img src="" /><!-- --></p> +<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1"></a></span> +<span id="cb4-2"><a href="#cb4-2"></a><span class="co"># Relative death probabilities in percentage of the latest census</span></span> +<span id="cb4-3"><a href="#cb4-3"></a><span class="kw">plot</span>(mort.AT.census.<span class="fl">1951.</span>male, mort.AT.census.<span class="fl">1991.</span>male, </span> +<span id="cb4-4"><a href="#cb4-4"></a> mort.AT.census.<span class="fl">2001.</span>male, </span> +<span id="cb4-5"><a href="#cb4-5"></a> <span class="dt">reference =</span> mort.AT.census.<span class="fl">2011.</span>male, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="dv">1</span>,<span class="fl">0.75</span>), <span class="dt">ylim =</span> <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">4</span>))</span> +<span id="cb4-6"><a href="#cb4-6"></a><span class="co">#> Warning in normalize_deathProbabilities(if (is.data.frame(t@data$dim)</span></span> +<span id="cb4-7"><a href="#cb4-7"></a><span class="co">#> || : Reference mortality table does not contain ages</span></span> +<span id="cb4-8"><a href="#cb4-8"></a><span class="co">#> 101102103104105106107108109110111112 required for normalization. These ages will</span></span> +<span id="cb4-9"><a href="#cb4-9"></a><span class="co">#> not be normalized!</span></span></code></pre></div> +<p><img src="" /><!-- --></p> <p>For cohort life tables, the plot functions also take either the <code>YOB</code> or the <code>Period</code> parameter to plot either the cohort death probabilities for the given birth year or the period death probabilities for the given observation year.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Comparison of two Austrian annuity tables for birth year 1977</span> -<span class="kw">plot</span>(AVOe1996R.male, AVOe2005R.male, <span class="dt">YOB =</span> <span class="dv">1977</span>, <span class="dt">title =</span> <span class="st">"Comparison for YOB=1977"</span>)</code></pre></div> -<p><img src="" /><!-- --></p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"> -<span class="co"># Comparison of two Austrian annuity tables for observation year 2020</span> -<span class="kw">plot</span>(AVOe1996R.male, AVOe2005R.male, <span class="dt">Period =</span> <span class="dv">2020</span>, <span class="dt">title =</span> <span class="st">"Comparison for observation year 2020"</span>)</code></pre></div> -<p><img src="" /><!-- --></p> +<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1"></a><span class="co"># Comparison of two Austrian annuity tables for birth year 1977</span></span> +<span id="cb5-2"><a href="#cb5-2"></a><span class="kw">plot</span>(AVOe1996R.male, AVOe2005R.male, <span class="dt">YOB =</span> <span class="dv">1977</span>, <span class="dt">title =</span> <span class="st">"Comparison for YOB=1977"</span>)</span></code></pre></div> +<p><img src="" /><!-- --></p> +<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1"></a></span> +<span id="cb6-2"><a href="#cb6-2"></a><span class="co"># Comparison of two Austrian annuity tables for observation year 2020</span></span> +<span id="cb6-3"><a href="#cb6-3"></a><span class="kw">plot</span>(AVOe1996R.male, AVOe2005R.male, <span class="dt">Period =</span> <span class="dv">2020</span>, <span class="dt">title =</span> <span class="st">"Comparison for observation year 2020"</span>)</span></code></pre></div> +<p><img src="" /><!-- --></p> </div> <div id="obtaining-period-and-cohort-death-probabilities" class="section level3"> <h3>Obtaining period and cohort death probabilities</h3> @@ -269,35 +508,35 @@ code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Inf <li><code>deathProbabilities</code>: Returns the (cohort) death probabilities of the life table given the birth year</li> <li><code>periodDeathProbabilities</code>: Returns the (period) death probabilities of the life table for a given observation year</li> </ul> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">mortalityTables.load</span>(<span class="st">"Austria_Annuities"</span>) -<span class="co"># Get the cohort death probabilities for Austrian Annuitants born in 1977:</span> -qx.coh1977 =<span class="st"> </span><span class="kw">deathProbabilities</span>(AVOe2005R.male, <span class="dt">YOB =</span> <span class="dv">1977</span>) - -<span class="co"># Get the period death probabilities for Austrian Annuitants observed in the year 2020:</span> -qx.per2020 =<span class="st"> </span><span class="kw">periodDeathProbabilities</span>(AVOe2005R.male, <span class="dt">Period =</span> <span class="dv">2020</span>)</code></pre></div> +<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1"></a><span class="kw">mortalityTables.load</span>(<span class="st">"Austria_Annuities"</span>)</span> +<span id="cb7-2"><a href="#cb7-2"></a><span class="co"># Get the cohort death probabilities for Austrian Annuitants born in 1977:</span></span> +<span id="cb7-3"><a href="#cb7-3"></a>qx.coh1977 =<span class="st"> </span><span class="kw">deathProbabilities</span>(AVOe2005R.male, <span class="dt">YOB =</span> <span class="dv">1977</span>)</span> +<span id="cb7-4"><a href="#cb7-4"></a></span> +<span id="cb7-5"><a href="#cb7-5"></a><span class="co"># Get the period death probabilities for Austrian Annuitants observed in the year 2020:</span></span> +<span id="cb7-6"><a href="#cb7-6"></a>qx.per2020 =<span class="st"> </span><span class="kw">periodDeathProbabilities</span>(AVOe2005R.male, <span class="dt">Period =</span> <span class="dv">2020</span>)</span></code></pre></div> <p>These functions return the death probabilities as a simple, numeric R vector.</p> <p>There are two similar functions that return the death probabilities as a period life table object that can be used with all other functions provided by this package:</p> <ul> <li><code>getCohortTable</code>: Get a <code>mortalityTable</code> object describing the death probabilities for people born in the given year</li> <li><code>getPeriodTable</code>: Get a <code>mortalityTable</code> object describing the death probabilities observed in the given year</li> </ul> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Get the cohort death probabilities for Austrian Annuitants born in 1977 as a mortalityTable.period object:</span> -table.coh1977 =<span class="st"> </span><span class="kw">getCohortTable</span>(AVOe2005R.male, <span class="dt">YOB =</span> <span class="dv">1977</span>) - -<span class="co"># Get the period death probabilities for Austrian Annuitants observed in the year 2020:</span> -table.per2020 =<span class="st"> </span><span class="kw">getPeriodTable</span>(AVOe2005R.male, <span class="dt">Period =</span> <span class="dv">2020</span>) - -<span class="co"># Compare those two in a plot:</span> -<span class="kw">plot</span>(table.coh1977, table.per2020, <span class="dt">title =</span> <span class="st">"Comparison of cohort 1977 with Period 2020"</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="dv">1</span>,<span class="dv">0</span>))</code></pre></div> -<p><img src="" /><!-- --></p> +<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1"></a><span class="co"># Get the cohort death probabilities for Austrian Annuitants born in 1977 as a mortalityTable.period object:</span></span> +<span id="cb8-2"><a href="#cb8-2"></a>table.coh1977 =<span class="st"> </span><span class="kw">getCohortTable</span>(AVOe2005R.male, <span class="dt">YOB =</span> <span class="dv">1977</span>)</span> +<span id="cb8-3"><a href="#cb8-3"></a></span> +<span id="cb8-4"><a href="#cb8-4"></a><span class="co"># Get the period death probabilities for Austrian Annuitants observed in the year 2020:</span></span> +<span id="cb8-5"><a href="#cb8-5"></a>table.per2020 =<span class="st"> </span><span class="kw">getPeriodTable</span>(AVOe2005R.male, <span class="dt">Period =</span> <span class="dv">2020</span>)</span> +<span id="cb8-6"><a href="#cb8-6"></a></span> +<span id="cb8-7"><a href="#cb8-7"></a><span class="co"># Compare those two in a plot:</span></span> +<span id="cb8-8"><a href="#cb8-8"></a><span class="kw">plot</span>(table.coh1977, table.per2020, <span class="dt">title =</span> <span class="st">"Comparison of cohort 1977 with Period 2020"</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="dv">1</span>,<span class="dv">0</span>))</span></code></pre></div> +<p><img src="" /><!-- --></p> <p>Not surprisingly, at 43 years the two death probabilities cross, because in 2020 the person born 1977 is 43 years old, so the <span class="math inline">\(q_x\)</span> refer to the same person. However, for younger ages, the period 2020 probabilities are lower, because the mortality improvement for those younger ages has much less time in the cohort 1977 table. For ages above 43 the cohort table describes the mortality further into the future than 2020, so there is more improvement and thus lower death probabilities for the cohort life table.</p> </div> <div id="other-data-extraction-functions-from-life-tables" class="section level3"> <h3>Other data extraction functions from life tables</h3> <table> <colgroup> -<col width="31%"></col> -<col width="68%"></col> +<col width="30%"></col> +<col width="69%"></col> </colgroup> <thead> <tr class="header"> @@ -339,30 +578,30 @@ table.per2020 =<span class="st"> </span><span class="kw">getPeriodTable</span>(A <div id="period-life-tables" class="section level3"> <h3>Period life tables</h3> <p>Period death probabilities are the simplest type of life table, giving the probabilities of death observed during the corresponding year (the “period”). The death probabilities of different ages refer to different persons, being of the corresponding ages in the observation year. All that is needed to create a period life table are the death probabilities and the corresponding ages:</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">lt =<span class="st"> </span><span class="kw">mortalityTable.period</span>(<span class="dt">name =</span> <span class="st">"Sample period lifetable"</span>, <span class="dt">ages =</span> <span class="dv">1</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">deathProbs =</span> <span class="kw">exp</span>(<span class="op">-</span>(<span class="dv">99</span><span class="op">:</span><span class="dv">1</span>)<span class="op">/</span><span class="dv">10</span>)) -<span class="kw">plot</span>(lt, <span class="dt">title =</span> <span class="st">"Simple log-linear period mortality table"</span>)</code></pre></div> -<p><img src="" /><!-- --></p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">deathProbabilities</span>(lt) -<span class="co">#> [1] 5.017468e-05 5.545160e-05 6.128350e-05 6.772874e-05 7.485183e-05</span> -<span class="co">#> [6] 8.272407e-05 9.142423e-05 1.010394e-04 1.116658e-04 1.234098e-04</span> -<span class="co">#> [11] 1.363889e-04 1.507331e-04 1.665858e-04 1.841058e-04 2.034684e-04</span> -<span class="co">#> [16] 2.248673e-04 2.485168e-04 2.746536e-04 3.035391e-04 3.354626e-04</span> -<span class="co">#> [21] 3.707435e-04 4.097350e-04 4.528272e-04 5.004514e-04 5.530844e-04</span> -<span class="co">#> [26] 6.112528e-04 6.755388e-04 7.465858e-04 8.251049e-04 9.118820e-04</span> -<span class="co">#> [31] 1.007785e-03 1.113775e-03 1.230912e-03 1.360368e-03 1.503439e-03</span> -<span class="co">#> [36] 1.661557e-03 1.836305e-03 2.029431e-03 2.242868e-03 2.478752e-03</span> -<span class="co">#> [41] 2.739445e-03 3.027555e-03 3.345965e-03 3.697864e-03 4.086771e-03</span> -<span class="co">#> [46] 4.516581e-03 4.991594e-03 5.516564e-03 6.096747e-03 6.737947e-03</span> -<span class="co">#> [51] 7.446583e-03 8.229747e-03 9.095277e-03 1.005184e-02 1.110900e-02</span> -<span class="co">#> [56] 1.227734e-02 1.356856e-02 1.499558e-02 1.657268e-02 1.831564e-02</span> -<span class="co">#> [61] 2.024191e-02 2.237077e-02 2.472353e-02 2.732372e-02 3.019738e-02</span> -<span class="co">#> [66] 3.337327e-02 3.688317e-02 4.076220e-02 4.504920e-02 4.978707e-02</span> -<span class="co">#> [71] 5.502322e-02 6.081006e-02 6.720551e-02 7.427358e-02 8.208500e-02</span> -<span class="co">#> [76] 9.071795e-02 1.002588e-01 1.108032e-01 1.224564e-01 1.353353e-01</span> -<span class="co">#> [81] 1.495686e-01 1.652989e-01 1.826835e-01 2.018965e-01 2.231302e-01</span> -<span class="co">#> [86] 2.465970e-01 2.725318e-01 3.011942e-01 3.328711e-01 3.678794e-01</span> -<span class="co">#> [91] 4.065697e-01 4.493290e-01 4.965853e-01 5.488116e-01 6.065307e-01</span> -<span class="co">#> [96] 6.703200e-01 7.408182e-01 8.187308e-01 9.048374e-01</span></code></pre></div> +<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1"></a>lt =<span class="st"> </span><span class="kw">mortalityTable.period</span>(<span class="dt">name =</span> <span class="st">"Sample period lifetable"</span>, <span class="dt">ages =</span> <span class="dv">1</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">deathProbs =</span> <span class="kw">exp</span>(<span class="op">-</span>(<span class="dv">99</span><span class="op">:</span><span class="dv">1</span>)<span class="op">/</span><span class="dv">10</span>))</span> +<span id="cb9-2"><a href="#cb9-2"></a><span class="kw">plot</span>(lt, <span class="dt">title =</span> <span class="st">"Simple log-linear period mortality table"</span>)</span></code></pre></div> +<p><img src="" /><!-- --></p> +<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1"></a><span class="kw">deathProbabilities</span>(lt)</span> +<span id="cb10-2"><a href="#cb10-2"></a><span class="co">#> [1] 5.017468e-05 5.545160e-05 6.128350e-05 6.772874e-05 7.485183e-05</span></span> +<span id="cb10-3"><a href="#cb10-3"></a><span class="co">#> [6] 8.272407e-05 9.142423e-05 1.010394e-04 1.116658e-04 1.234098e-04</span></span> +<span id="cb10-4"><a href="#cb10-4"></a><span class="co">#> [11] 1.363889e-04 1.507331e-04 1.665858e-04 1.841058e-04 2.034684e-04</span></span> +<span id="cb10-5"><a href="#cb10-5"></a><span class="co">#> [16] 2.248673e-04 2.485168e-04 2.746536e-04 3.035391e-04 3.354626e-04</span></span> +<span id="cb10-6"><a href="#cb10-6"></a><span class="co">#> [21] 3.707435e-04 4.097350e-04 4.528272e-04 5.004514e-04 5.530844e-04</span></span> +<span id="cb10-7"><a href="#cb10-7"></a><span class="co">#> [26] 6.112528e-04 6.755388e-04 7.465858e-04 8.251049e-04 9.118820e-04</span></span> +<span id="cb10-8"><a href="#cb10-8"></a><span class="co">#> [31] 1.007785e-03 1.113775e-03 1.230912e-03 1.360368e-03 1.503439e-03</span></span> +<span id="cb10-9"><a href="#cb10-9"></a><span class="co">#> [36] 1.661557e-03 1.836305e-03 2.029431e-03 2.242868e-03 2.478752e-03</span></span> +<span id="cb10-10"><a href="#cb10-10"></a><span class="co">#> [41] 2.739445e-03 3.027555e-03 3.345965e-03 3.697864e-03 4.086771e-03</span></span> +<span id="cb10-11"><a href="#cb10-11"></a><span class="co">#> [46] 4.516581e-03 4.991594e-03 5.516564e-03 6.096747e-03 6.737947e-03</span></span> +<span id="cb10-12"><a href="#cb10-12"></a><span class="co">#> [51] 7.446583e-03 8.229747e-03 9.095277e-03 1.005184e-02 1.110900e-02</span></span> +<span id="cb10-13"><a href="#cb10-13"></a><span class="co">#> [56] 1.227734e-02 1.356856e-02 1.499558e-02 1.657268e-02 1.831564e-02</span></span> +<span id="cb10-14"><a href="#cb10-14"></a><span class="co">#> [61] 2.024191e-02 2.237077e-02 2.472353e-02 2.732372e-02 3.019738e-02</span></span> +<span id="cb10-15"><a href="#cb10-15"></a><span class="co">#> [66] 3.337327e-02 3.688317e-02 4.076220e-02 4.504920e-02 4.978707e-02</span></span> +<span id="cb10-16"><a href="#cb10-16"></a><span class="co">#> [71] 5.502322e-02 6.081006e-02 6.720551e-02 7.427358e-02 8.208500e-02</span></span> +<span id="cb10-17"><a href="#cb10-17"></a><span class="co">#> [76] 9.071795e-02 1.002588e-01 1.108032e-01 1.224564e-01 1.353353e-01</span></span> +<span id="cb10-18"><a href="#cb10-18"></a><span class="co">#> [81] 1.495686e-01 1.652989e-01 1.826835e-01 2.018965e-01 2.231302e-01</span></span> +<span id="cb10-19"><a href="#cb10-19"></a><span class="co">#> [86] 2.465970e-01 2.725318e-01 3.011942e-01 3.328711e-01 3.678794e-01</span></span> +<span id="cb10-20"><a href="#cb10-20"></a><span class="co">#> [91] 4.065697e-01 4.493290e-01 4.965853e-01 5.488116e-01 6.065307e-01</span></span> +<span id="cb10-21"><a href="#cb10-21"></a><span class="co">#> [96] 6.703200e-01 7.408182e-01 8.187308e-01 9.048374e-01</span></span></code></pre></div> <!-- ### Observed life tables --> <!-- The observations for the given years --> <!-- TODO --> @@ -376,49 +615,49 @@ table.per2020 =<span class="st"> </span><span class="kw">getPeriodTable</span>(A <li>The base year (numeric)</li> <li></li> </ul> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">atPlus2 =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>( - <span class="dt">name =</span> <span class="st">"Austrian Census Males 2011, 2% yearly trend"</span>, - <span class="dt">baseYear =</span> <span class="dv">2011</span>, - <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male), - <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male), - <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))) -)</code></pre></div> +<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1"></a>atPlus2 =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>(</span> +<span id="cb11-2"><a href="#cb11-2"></a> <span class="dt">name =</span> <span class="st">"Austrian Census Males 2011, 2% yearly trend"</span>,</span> +<span id="cb11-3"><a href="#cb11-3"></a> <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span> +<span id="cb11-4"><a href="#cb11-4"></a> <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span> +<span id="cb11-5"><a href="#cb11-5"></a> <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span> +<span id="cb11-6"><a href="#cb11-6"></a> <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male)))</span> +<span id="cb11-7"><a href="#cb11-7"></a>)</span></code></pre></div> <p>Some life tables do not assume a constant age-specific trend over time, but rather assume that the currently observed high mortality improvements are just a temporary effect, so the current trend is in effect only for some time and then reduces to some kind of long-term trend.</p> <p>There are two conceptual approaches: One is to use a trend dampening function that is simply applied to the starting trend. So, while the initial trend might be 3%, i.e. the projection will use <code>(ObservationYear-BaseYear) * OriginalYear</code>, over time it will assume the value <code>dampeningFunction(ObservationYear-BaseYear) * OriginalTrend</code>. The dampening function in this case gives the cumulated trend effect from the base year until the observation year. To implement this trend reduction with the MortalityTables package, simply pass a one-argument function as the <code>dampingFunction</code> slot to the class, the argument will be the number of years from the base year (NOT the calendar year!):</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">atPlus2.damp =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>( - <span class="dt">name =</span> <span class="st">"Austrian M '11, 2% yearly, damping until 2111"</span>, - <span class="dt">baseYear =</span> <span class="dv">2011</span>, - <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male), - <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male), - <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))), - <span class="co"># damping function: 2011: full effect, linear reduction until yearly trend=0 in 2111:</span> - <span class="co"># 2011: 100%, 2012: 99%, 2013: 98% => For 2013 we have a cumulative trend </span> - <span class="co"># of 297% instead of 300% for three full yearly trends!</span> - <span class="dt">dampingFunction =</span> <span class="cf">function</span>(n) { n <span class="op">-</span><span class="st"> </span>n <span class="op">*</span><span class="st"> </span>(n <span class="op">+</span><span class="st"> </span><span class="dv">1</span>) <span class="op">/</span><span class="st"> </span><span class="dv">2</span> <span class="op">/</span><span class="st"> </span><span class="dv">100</span> } -) - -<span class="kw">plot</span>(mort.AT.census.<span class="fl">2011.</span>male, atPlus2, atPlus2.damp, <span class="dt">YOB =</span> <span class="dv">2011</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</code></pre></div> -<p><img src="" /><!-- --></p> +<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1"></a>atPlus2.damp =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>(</span> +<span id="cb12-2"><a href="#cb12-2"></a> <span class="dt">name =</span> <span class="st">"Austrian M '11, 2% yearly, damping until 2111"</span>,</span> +<span id="cb12-3"><a href="#cb12-3"></a> <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span> +<span id="cb12-4"><a href="#cb12-4"></a> <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span> +<span id="cb12-5"><a href="#cb12-5"></a> <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span> +<span id="cb12-6"><a href="#cb12-6"></a> <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span> +<span id="cb12-7"><a href="#cb12-7"></a> <span class="co"># damping function: 2011: full effect, linear reduction until yearly trend=0 in 2111:</span></span> +<span id="cb12-8"><a href="#cb12-8"></a> <span class="co"># 2011: 100%, 2012: 99%, 2013: 98% => For 2013 we have a cumulative trend </span></span> +<span id="cb12-9"><a href="#cb12-9"></a> <span class="co"># of 297% instead of 300% for three full yearly trends!</span></span> +<span id="cb12-10"><a href="#cb12-10"></a> <span class="dt">dampingFunction =</span> <span class="cf">function</span>(n) { n <span class="op">-</span><span class="st"> </span>n <span class="op">*</span><span class="st"> </span>(n <span class="op">+</span><span class="st"> </span><span class="dv">1</span>) <span class="op">/</span><span class="st"> </span><span class="dv">2</span> <span class="op">/</span><span class="st"> </span><span class="dv">100</span> }</span> +<span id="cb12-11"><a href="#cb12-11"></a>)</span> +<span id="cb12-12"><a href="#cb12-12"></a></span> +<span id="cb12-13"><a href="#cb12-13"></a><span class="kw">plot</span>(mort.AT.census.<span class="fl">2011.</span>male, atPlus2, atPlus2.damp, <span class="dt">YOB =</span> <span class="dv">2011</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code></pre></div> +<p><img src="" /><!-- --></p> <p>The other approach is to assume that instead of the initial trend, after some time a second trend (slot trend2) takes over. In this case, the <code>dampingFunction</code> slot is again a one-argument function that now gives the weight of the first trend, while <code>1-dampingFunction(year)</code> will give the weight of the second trend. As the weights will be applied for the whole period from the base- to the observation year, the weights need to be cumulated and normalized.</p> <p>The argument in this case is the actual calendar year (not the year since the base year like it was in the one-trend case above!)</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">atPlus2.damp2 =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>( - <span class="dt">name =</span> <span class="st">"Austrian M '11, 2% yearly, 1% long-term"</span>, - <span class="dt">baseYear =</span> <span class="dv">2011</span>, - <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male), - <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male), - <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))), - <span class="dt">trend2 =</span> <span class="kw">rep</span>(<span class="fl">0.01</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))), - <span class="co"># damping function interpolates between the two trends: </span> - <span class="co"># until 2021 trend 1, from 2031 trend 2, linearly beteen</span> - <span class="dt">dampingFunction =</span> <span class="cf">function</span>(year) { - <span class="cf">if</span> (year <span class="op"><=</span><span class="st"> </span><span class="dv">2021</span>) <span class="dv">1</span> - <span class="cf">else</span> <span class="cf">if</span> (year <span class="op">></span><span class="st"> </span><span class="dv">2031</span>) <span class="fl">14.5</span><span class="op">/</span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2011</span>) - <span class="cf">else</span> <span class="dv">1</span> <span class="op">-</span><span class="st"> </span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2021</span>)<span class="op">*</span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2021</span> <span class="op">+</span><span class="st"> </span><span class="dv">1</span>) <span class="op">/</span><span class="st"> </span><span class="dv">20</span> <span class="op">/</span><span class="st"> </span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2011</span>) - } -) - -<span class="kw">plot</span>(mort.AT.census.<span class="fl">2011.</span>male, atPlus2, atPlus2.damp, atPlus2.damp2, <span class="dt">YOB =</span> <span class="dv">2011</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</code></pre></div> -<p><img src="" /><!-- --></p> +<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1"></a>atPlus2.damp2 =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>(</span> +<span id="cb13-2"><a href="#cb13-2"></a> <span class="dt">name =</span> <span class="st">"Austrian M '11, 2% yearly, 1% long-term"</span>,</span> +<span id="cb13-3"><a href="#cb13-3"></a> <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span> +<span id="cb13-4"><a href="#cb13-4"></a> <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span> +<span id="cb13-5"><a href="#cb13-5"></a> <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span> +<span id="cb13-6"><a href="#cb13-6"></a> <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span> +<span id="cb13-7"><a href="#cb13-7"></a> <span class="dt">trend2 =</span> <span class="kw">rep</span>(<span class="fl">0.01</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span> +<span id="cb13-8"><a href="#cb13-8"></a> <span class="co"># damping function interpolates between the two trends: </span></span> +<span id="cb13-9"><a href="#cb13-9"></a> <span class="co"># until 2021 trend 1, from 2031 trend 2, linearly beteen</span></span> +<span id="cb13-10"><a href="#cb13-10"></a> <span class="dt">dampingFunction =</span> <span class="cf">function</span>(year) { </span> +<span id="cb13-11"><a href="#cb13-11"></a> <span class="cf">if</span> (year <span class="op"><=</span><span class="st"> </span><span class="dv">2021</span>) <span class="dv">1</span></span> +<span id="cb13-12"><a href="#cb13-12"></a> <span class="cf">else</span> <span class="cf">if</span> (year <span class="op">></span><span class="st"> </span><span class="dv">2031</span>) <span class="fl">14.5</span><span class="op">/</span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2011</span>)</span> +<span id="cb13-13"><a href="#cb13-13"></a> <span class="cf">else</span> <span class="dv">1</span> <span class="op">-</span><span class="st"> </span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2021</span>)<span class="op">*</span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2021</span> <span class="op">+</span><span class="st"> </span><span class="dv">1</span>) <span class="op">/</span><span class="st"> </span><span class="dv">20</span> <span class="op">/</span><span class="st"> </span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2011</span>)</span> +<span id="cb13-14"><a href="#cb13-14"></a> }</span> +<span id="cb13-15"><a href="#cb13-15"></a>)</span> +<span id="cb13-16"><a href="#cb13-16"></a></span> +<span id="cb13-17"><a href="#cb13-17"></a><span class="kw">plot</span>(mort.AT.census.<span class="fl">2011.</span>male, atPlus2, atPlus2.damp, atPlus2.damp2, <span class="dt">YOB =</span> <span class="dv">2011</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code></pre></div> +<p><img src="" /><!-- --></p> </div> <div id="cohort-life-tables-with-age-shift" class="section level3"> <h3>Cohort life tables with age-shift</h3> @@ -429,33 +668,33 @@ table.per2020 =<span class="st"> </span><span class="kw">getPeriodTable</span>(A <p>So, an age-shifted cohort life table just needs the base table and for each birth year the amount the age is modified.</p> <p>For those people, who think visually, age shifting works on the death probabilities as following: A normal trend moves the <span class="math inline">\(q_x\)</span> curve downwards. Age-shifting approximates this by shifting the <span class="math inline">\(q_x\)</span> curve to the right without modifying its values.</p> <p>The following example clearly shows this, with the blue curve being the base table for YOB 2011. A full trend projection moves the curve down to the green line, while age-shifting moves the base curve to the right so that it coincides as much as possible with the exact (green) line.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">baseTableShift =<span class="st"> </span><span class="kw">getCohortTable</span>(atPlus2, <span class="dt">YOB =</span> <span class="dv">2011</span>); -baseTableShift<span class="op">@</span>name =<span class="st"> "Base table of the shift (YOB 2011)"</span> - -atShifted =<span class="st"> </span><span class="kw">mortalityTable.ageShift</span>( - <span class="dt">name =</span> <span class="st">"Approximation with age shift"</span>, - <span class="dt">baseYear =</span> <span class="dv">2011</span>, - <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(baseTableShift), - <span class="dt">ages =</span> <span class="kw">ages</span>(baseTableShift), - <span class="dt">ageShifts =</span> <span class="kw">data.frame</span>( - <span class="dt">shifts =</span> <span class="kw">c</span>( - <span class="kw">rep</span>( <span class="dv">0</span>, <span class="dv">3</span>), - <span class="kw">rep</span>(<span class="op">-</span><span class="dv">1</span>, <span class="dv">3</span>), - <span class="kw">rep</span>(<span class="op">-</span><span class="dv">2</span>, <span class="dv">3</span>), - <span class="kw">rep</span>(<span class="op">-</span><span class="dv">3</span>, <span class="dv">3</span>), - <span class="kw">rep</span>(<span class="op">-</span><span class="dv">4</span>, <span class="dv">3</span>), - <span class="kw">rep</span>(<span class="op">-</span><span class="dv">5</span>, <span class="dv">3</span>), - <span class="kw">rep</span>(<span class="op">-</span><span class="dv">6</span>, <span class="dv">3</span>) - ), - <span class="dt">row.names =</span> <span class="dv">2011</span><span class="op">:</span><span class="dv">2031</span> - ) -) - -<span class="kw">ageShift</span>(atShifted, <span class="dt">YOB =</span> <span class="dv">2021</span>) -<span class="co">#> [1] -3</span> - -<span class="kw">plot</span>(baseTableShift, atPlus2, atShifted, <span class="dt">YOB =</span> <span class="dv">2021</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</code></pre></div> -<p><img src="" /><!-- --></p> +<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1"></a>baseTableShift =<span class="st"> </span><span class="kw">getCohortTable</span>(atPlus2, <span class="dt">YOB =</span> <span class="dv">2011</span>);</span> +<span id="cb14-2"><a href="#cb14-2"></a>baseTableShift<span class="op">@</span>name =<span class="st"> "Base table of the shift (YOB 2011)"</span></span> +<span id="cb14-3"><a href="#cb14-3"></a></span> +<span id="cb14-4"><a href="#cb14-4"></a>atShifted =<span class="st"> </span><span class="kw">mortalityTable.ageShift</span>(</span> +<span id="cb14-5"><a href="#cb14-5"></a> <span class="dt">name =</span> <span class="st">"Approximation with age shift"</span>,</span> +<span id="cb14-6"><a href="#cb14-6"></a> <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span> +<span id="cb14-7"><a href="#cb14-7"></a> <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(baseTableShift),</span> +<span id="cb14-8"><a href="#cb14-8"></a> <span class="dt">ages =</span> <span class="kw">ages</span>(baseTableShift),</span> +<span id="cb14-9"><a href="#cb14-9"></a> <span class="dt">ageShifts =</span> <span class="kw">data.frame</span>(</span> +<span id="cb14-10"><a href="#cb14-10"></a> <span class="dt">shifts =</span> <span class="kw">c</span>(</span> +<span id="cb14-11"><a href="#cb14-11"></a> <span class="kw">rep</span>( <span class="dv">0</span>, <span class="dv">3</span>), </span> +<span id="cb14-12"><a href="#cb14-12"></a> <span class="kw">rep</span>(<span class="op">-</span><span class="dv">1</span>, <span class="dv">3</span>), </span> +<span id="cb14-13"><a href="#cb14-13"></a> <span class="kw">rep</span>(<span class="op">-</span><span class="dv">2</span>, <span class="dv">3</span>), </span> +<span id="cb14-14"><a href="#cb14-14"></a> <span class="kw">rep</span>(<span class="op">-</span><span class="dv">3</span>, <span class="dv">3</span>), </span> +<span id="cb14-15"><a href="#cb14-15"></a> <span class="kw">rep</span>(<span class="op">-</span><span class="dv">4</span>, <span class="dv">3</span>), </span> +<span id="cb14-16"><a href="#cb14-16"></a> <span class="kw">rep</span>(<span class="op">-</span><span class="dv">5</span>, <span class="dv">3</span>), </span> +<span id="cb14-17"><a href="#cb14-17"></a> <span class="kw">rep</span>(<span class="op">-</span><span class="dv">6</span>, <span class="dv">3</span>)</span> +<span id="cb14-18"><a href="#cb14-18"></a> ),</span> +<span id="cb14-19"><a href="#cb14-19"></a> <span class="dt">row.names =</span> <span class="dv">2011</span><span class="op">:</span><span class="dv">2031</span></span> +<span id="cb14-20"><a href="#cb14-20"></a> )</span> +<span id="cb14-21"><a href="#cb14-21"></a>)</span> +<span id="cb14-22"><a href="#cb14-22"></a></span> +<span id="cb14-23"><a href="#cb14-23"></a><span class="kw">ageShift</span>(atShifted, <span class="dt">YOB =</span> <span class="dv">2021</span>)</span> +<span id="cb14-24"><a href="#cb14-24"></a><span class="co">#> [1] -3</span></span> +<span id="cb14-25"><a href="#cb14-25"></a></span> +<span id="cb14-26"><a href="#cb14-26"></a><span class="kw">plot</span>(baseTableShift, atPlus2, atShifted, <span class="dt">YOB =</span> <span class="dv">2021</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code></pre></div> +<p><img src="" /><!-- --></p> <p>As one can see, for ages above 40 years, the table with 2% yearly trend and the corresponding age-shifted table have roughly the same mortalities. Below 40 years, the two are very different, so this approximation through age-shifting should really be used with extreme care!</p> </div> </div> @@ -464,43 +703,75 @@ atShifted =<span class="st"> </span><span class="kw">mortalityTable.ageShift</sp <div id="copying-life-tables" class="section level3"> <h3>Copying life tables</h3> <p>Life tables are simple pass-by-value S4 objects, so copying works by simple assignment.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">b =<span class="st"> </span>AVOe2005R.female -b<span class="op">@</span>name =<span class="st"> "Modified Copy"</span> -<span class="co"># only b is modified, not the original table</span> -b<span class="op">@</span>modification =<span class="st"> </span><span class="cf">function</span>(qx) <span class="kw">pmax</span>(qx, <span class="fl">0.01</span>) -<span class="kw">plot</span>(AVOe2005R.female, b, <span class="dt">YOB =</span> <span class="dv">2000</span>)</code></pre></div> -<p><img src="" /><!-- --></p> +<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1"></a>b =<span class="st"> </span>AVOe2005R.female </span> +<span id="cb15-2"><a href="#cb15-2"></a>b<span class="op">@</span>name =<span class="st"> "Modified Copy"</span></span> +<span id="cb15-3"><a href="#cb15-3"></a><span class="co"># only b is modified, not the original table</span></span> +<span id="cb15-4"><a href="#cb15-4"></a>b<span class="op">@</span>modification =<span class="st"> </span><span class="cf">function</span>(qx) <span class="kw">pmax</span>(qx, <span class="fl">0.01</span>) </span> +<span id="cb15-5"><a href="#cb15-5"></a><span class="kw">plot</span>(AVOe2005R.female, b, <span class="dt">YOB =</span> <span class="dv">2000</span>)</span></code></pre></div> +<p><img src="" /><!-- --></p> </div> <div id="adding-a-security-loading-to-the-raw-probabilities" class="section level3"> <h3>Adding a security loading to the raw probabilities</h3> <p>When calculating premiums for life insurance contracts, one often needs to add a certain security loading on the raw death probabilities (e.g. 10% increased death probabilities) to account for statistical fluctuations. This can be easily done with the <code>setLoading</code> function that returns a copy of the given table and adds the given security loading.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">AVOe2005R.female.sec =<span class="st"> </span><span class="kw">setLoading</span>(AVOe2005R.female, <span class="dt">loading =</span> <span class="fl">0.1</span>); -<span class="co"># Make sure the modified table has a new name, otherwise plots might break</span> -AVOe2005R.female.sec<span class="op">@</span>name =<span class="st"> "Table with 10% loading"</span> -<span class="kw">plot</span>(AVOe2005R.female, AVOe2005R.female.sec, <span class="dt">title =</span> <span class="st">"Original and modified table"</span>)</code></pre></div> -<p><img src="" /><!-- --></p> +<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1"></a>AVOe2005R.female.sec =<span class="st"> </span><span class="kw">setLoading</span>(AVOe2005R.female, <span class="dt">loading =</span> <span class="fl">0.1</span>);</span> +<span id="cb16-2"><a href="#cb16-2"></a><span class="co"># Make sure the modified table has a new name, otherwise plots might break</span></span> +<span id="cb16-3"><a href="#cb16-3"></a>AVOe2005R.female.sec<span class="op">@</span>name =<span class="st"> "Table with 10% loading"</span></span> +<span id="cb16-4"><a href="#cb16-4"></a><span class="kw">plot</span>(AVOe2005R.female, AVOe2005R.female.sec, <span class="dt">title =</span> <span class="st">"Original and modified table"</span>)</span></code></pre></div> +<p><img src="" /><!-- --></p> </div> <div id="adding-a-modification-to-the-raw-probabilities" class="section level3"> <h3>Adding a modification to the raw probabilities</h3> <p>Some uses require post-processing of the death probabilities, like adding a lower bound for the death probabilities. To achive this, all <code>mortalityTable</code>-derived classes have a slot <code>modification</code> that takes a function that is passed the vector of death probabilities.</p> -<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">AVOe2005R.female.mod =<span class="st"> </span><span class="kw">setModification</span>(AVOe2005R.female, <span class="dt">modification =</span> <span class="cf">function</span>(qx) <span class="kw">pmax</span>(<span class="fl">0.03</span>, qx)); -<span class="co"># Make sure the modified table has a new name, otherwise plots might break</span> -AVOe2005R.female.mod<span class="op">@</span>name =<span class="st"> "Modified table (lower bound of 3%)"</span> -<span class="kw">plot</span>(AVOe2005R.female, AVOe2005R.female.mod, <span class="dt">title =</span> <span class="st">"Original and modified table"</span>)</code></pre></div> -<p><img src="" /><!-- --></p> +<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1"></a>AVOe2005R.female.mod =<span class="st"> </span><span class="kw">setModification</span>(AVOe2005R.female, <span class="dt">modification =</span> <span class="cf">function</span>(qx) <span class="kw">pmax</span>(<span class="fl">0.03</span>, qx));</span> +<span id="cb17-2"><a href="#cb17-2"></a><span class="co"># Make sure the modified table has a new name, otherwise plots might break</span></span> +<span id="cb17-3"><a href="#cb17-3"></a>AVOe2005R.female.mod<span class="op">@</span>name =<span class="st"> "Modified table (lower bound of 3%)"</span></span> +<span id="cb17-4"><a href="#cb17-4"></a><span class="kw">plot</span>(AVOe2005R.female, AVOe2005R.female.mod, <span class="dt">title =</span> <span class="st">"Original and modified table"</span>)</span></code></pre></div> +<p><img src="" /><!-- --></p> </div> </div> +<div id="creating-mortality-tables-from-data-and-modifying-them-using-various-helper-functions" class="section level2"> +<h2>Creating mortality tables from data and modifying them using various helper functions</h2> +<p>The package not only provides the data structures and some examples of mortality tables, it also provides several functions to modify existing tables. In particular, the functions available provide</p> +</div> <div id="pension-tables" class="section level2"> <h2>Pension Tables</h2> <p>Pension tables generalize mortality tables in that the state space is increased from two states (alive / dead) to four states (active / invalidity or realy retirement / old age retirement / dead). As a consequence, there is no longer just one transition probability, but multiple.</p> -<p>Possible states are: * active: healty, no pension, typically paying some kin of premium * incapacity: disablity pension (in most cases permanent), not working, early pension * retirement: old age pension, usually starting with a fixed age * dead * Widow/widower pension (if a widow exists at the time of death)</p> -<p>Correspondingly, the <code>pensionTable</code> class offers the following slots describing transition probabilities for the corresponding state transitions (by a <code>mortalityTable</code>-derived object): * <code>qxaa</code>: death probability of actives (active -> dead) * <code>ix</code>: invalidity probability (active -> incapacity) * <code>qix</code>: death probability of invalid (invalid -> dead) * <code>rx</code>: reactivation probability (incapacity -> active) * <code>apx</code>: retirement probability (active -> retirement), typically 1 for a fixed age * <code>apx</code>: retirement probability of invalids (invalid -> retirement), typically 0 or 1 for a fixed age * <code>qpx</code>: death probability of retired (retired -> dead) * <code>hx</code>: probability of a widow at moment of death (dead -> widow), y(x) age differene * <code>qxw</code>: death probability of widows/widowers * <code>qgx</code>: death probability of total group (irrespective of state)</p> +<p>Possible states are:</p> +<ul> +<li>active: healty, no pension, typically paying some kind of premium</li> +<li>incapacity: disablity pension (in most cases permanent), not working, early pension</li> +<li>retirement: old age pension, usually starting with a fixed age</li> +<li>dead +<ul> +<li>Widow/widower pension (if a widow exists at the time of death)</li> +</ul></li> +</ul> +<p>Correspondingly, the <code>pensionTable</code> class offers the following slots describing transition probabilities for the corresponding state transitions (by a <code>mortalityTable</code>-derived object):</p> +<ul> +<li><code>qxaa</code>: death probability of actives (active -> dead)</li> +<li><code>ix</code>: invalidity probability (active -> incapacity)</li> +<li><code>qix</code>: death probability of invalid (invalid -> dead)</li> +<li><code>rx</code>: reactivation probability (incapacity -> active)</li> +<li><code>apx</code>: retirement probability (active -> retirement), typically 1 for a fixed age</li> +<li><code>apx</code>: retirement probability of invalids (invalid -> retirement), typically 0 or 1 for a fixed age</li> +<li><code>qpx</code>: death probability of retired (retired -> dead)</li> +<li><code>hx</code>: probability of a widow at moment of death (dead -> widow), y(x) age differene</li> +<li><code>qxw</code>: death probability of widows/widowers</li> +<li><code>qgx</code>: death probability of total group (irrespective of state)</li> +</ul> <p>All functions that handle <code>mortalityTable</code> object can be used with these slots.</p> -<p>Additionally, the following functions are provided to obtain the set of all transition probabilities in one data frame: * <code>transitionProbabilities(pension_table, YOB)</code> * <code>periodTransitionProbabilities(pension_table, Period)</code></p> +<p>Additionally, the following functions are provided to obtain the set of all transition probabilities in one data frame:</p> +<ul> +<li><code>transitionProbabilities(pension_table, YOB)</code></li> +<li><code>periodTransitionProbabilities(pension_table, Period)</code></li> +</ul> </div> +<!-- code folding --> + + <!-- dynamically load mathjax for compatibility with self-contained --> <script> (function () {