diff --git a/DESCRIPTION b/DESCRIPTION
index e23bf7e55d08f4743dc4b7871a099d1d2da4a178..196e31f4b163ca760c701e61720e29ddbc710ee6 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,7 +1,7 @@
 Package: MortalityTables
 Type: Package
-Version: 2.0.3
-Date: 2021-08-17
+Version: 2.0.4
+Date: 2023-10-18
 Title: A Framework for Various Types of Mortality / Life Tables
 Authors@R: c(person("Reinhold", "Kainhofer", role=c("aut", "cre"), email="reinhold@kainhofer.com"))
 Author: Reinhold Kainhofer [aut, cre]
@@ -23,15 +23,15 @@ Enhances:
 Suggests:
     knitr,
     tidyverse,
-    rmarkdown,
-    reshape2
+    reshape2,
+    rmarkdown
 Description: Classes to implement and plot cohort life tables
     for actuarial calculations. In particular, birth-year dependent mortality
     tables using a yearly trend to extrapolate from a base year are implemented,
     as well as period life table, cohort life tables using an age shift, and
     merged life tables.
 License: GPL (>= 2)
-RoxygenNote: 7.1.1
+RoxygenNote: 7.2.3
 Collate: 
     'DocumentData.R'
     'mortalityTable.R'
diff --git a/man/MortalityTables-package.Rd b/man/MortalityTables-package.Rd
index 245ab2e91fd9525f42056228219203f5ee93fd6f..bc1481aa0305b9c834b893497c4ba92e26e74dd4 100644
--- a/man/MortalityTables-package.Rd
+++ b/man/MortalityTables-package.Rd
@@ -6,11 +6,7 @@
 \alias{MortalityTables-package}
 \title{Provide life table classes for life insurance purposes}
 \description{
-Classes to implement and plot cohort life tables
-    for actuarial calculations. In particular, birth-year dependent mortality
-    tables using a yearly trend to extrapolate from a base year are implemented,
-    as well as period life table, cohort life tables using an age shift, and
-    merged life tables.
+Classes to implement and plot cohort life tables for actuarial calculations. In particular, birth-year dependent mortality tables using a yearly trend to extrapolate from a base year are implemented, as well as period life table, cohort life tables using an age shift, and merged life tables.
 }
 \seealso{
 Useful links:
diff --git a/man/ageShift.Rd b/man/ageShift.Rd
index 2598172d5273e8a445b96a565cd404672d9a206c..4557d48cd023c7e08f94772cfbe09b36f25f92cf 100644
--- a/man/ageShift.Rd
+++ b/man/ageShift.Rd
@@ -24,13 +24,13 @@ Return the age shift of the age-shifted life table given the birth year
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable}: Age shifts apply only to mortalityTagle.ageShift, so
+\item \code{ageShift(mortalityTable)}: Age shifts apply only to mortalityTagle.ageShift, so
 all other tables return NA.
 
-\item \code{mortalityTable.ageShift}: Return the age shift of the age-shifted life table
+\item \code{ageShift(mortalityTable.ageShift)}: Return the age shift of the age-shifted life table
 given the birth year
-}}
 
+}}
 \examples{
 mortalityTables.load("Austria_Annuities")
 ageShift(AVOe2005R.male.av, YOB=1910)
diff --git a/man/ages.Rd b/man/ages.Rd
index f479dbaf1e3c6f74395409f1bfe6ce045499ba50..798453e2481d9ab18d6e252b618050b61b33cc5c 100644
--- a/man/ages.Rd
+++ b/man/ages.Rd
@@ -29,15 +29,15 @@ Return the defined ages of the life table
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable.period}: Return the defined ages of the period life table
+\item \code{ages(mortalityTable.period)}: Return the defined ages of the period life table
 
-\item \code{mortalityTable.mixed}: Return the defined ages of the mixed life table
+\item \code{ages(mortalityTable.mixed)}: Return the defined ages of the mixed life table
 
-\item \code{mortalityTable.jointLives}: Return the defined ages of the joint lives mortality table (returns the ages of the first table used for joint lives)
+\item \code{ages(mortalityTable.jointLives)}: Return the defined ages of the joint lives mortality table (returns the ages of the first table used for joint lives)
 
-\item \code{mortalityTable.observed}: Return the defined ages of the observed life table
-}}
+\item \code{ages(mortalityTable.observed)}: Return the defined ages of the observed life table
 
+}}
 \examples{
 mortalityTables.load("Austria_Annuities")
 ages(AVOe2005R.male)
diff --git a/man/baseTable.Rd b/man/baseTable.Rd
index f07c47079d5f5aa49d64298a21aaa53581ef5859..2115b6bc75eb057460d0764e9b30dc248cce34f7 100644
--- a/man/baseTable.Rd
+++ b/man/baseTable.Rd
@@ -25,13 +25,13 @@ Return the base table of the life table
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable}: Return the base table of the life table
+\item \code{baseTable(mortalityTable)}: Return the base table of the life table
 
-\item \code{mortalityTable.period}: Return the base table of the life table
+\item \code{baseTable(mortalityTable.period)}: Return the base table of the life table
 
-\item \code{mortalityTable.jointLives}: Return the base table of the joint lives mortality table (returns the base table of the first table used for joint lives)
-}}
+\item \code{baseTable(mortalityTable.jointLives)}: Return the base table of the joint lives mortality table (returns the base table of the first table used for joint lives)
 
+}}
 \examples{
 mortalityTables.load("Austria_Annuities")
 baseTable(AVOe2005R.male)
diff --git a/man/baseYear.Rd b/man/baseYear.Rd
index f58ed6b820f2556aa0a5b30acf46840971bec01c..d473c7374d11841e0a655acf481b54b3646aec69 100644
--- a/man/baseYear.Rd
+++ b/man/baseYear.Rd
@@ -25,13 +25,13 @@ Return the base year of the life table
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable}: Return the base year of the life table
+\item \code{baseYear(mortalityTable)}: Return the base year of the life table
 
-\item \code{mortalityTable.mixed}: Return the base year of the life table
+\item \code{baseYear(mortalityTable.mixed)}: Return the base year of the life table
 
-\item \code{mortalityTable.jointLives}: Return the base year of the life table
-}}
+\item \code{baseYear(mortalityTable.jointLives)}: Return the base year of the life table
 
+}}
 \examples{
 mortalityTables.load("Austria_Annuities")
 baseYear(AVOe2005R.male)
diff --git a/man/calculateImprovements.Rd b/man/calculateImprovements.Rd
index 5ff188e3b88e74ba3eb1b78a1b6f5a393610f4aa..f59cee382e3cc84d222368172754a4f16de0323a 100644
--- a/man/calculateImprovements.Rd
+++ b/man/calculateImprovements.Rd
@@ -25,11 +25,11 @@ Calculate the improvement factors for the given birth-year and the
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable.improvementFactors}: Calculate the total mortality improvement
+\item \code{calculateImprovements(mortalityTable.improvementFactors)}: Calculate the total mortality improvement
 factors relative to the base year for the given birth-year and the
 \code{\linkS4class{mortalityTable.improvementFactors}} object
-}}
 
+}}
 \examples{
 pensionTables.load("USA_PensionPlan_RP2014")
 calculateImprovements(RP2014.male@qx, YOB = 2017)
diff --git a/man/commutationNumbers.Rd b/man/commutationNumbers.Rd
index 0e251f9e2cca77dc38ea812de682e1737efce766..50ceb8bb5849b504813f264c7fddcd6e6f5ed05b 100644
--- a/man/commutationNumbers.Rd
+++ b/man/commutationNumbers.Rd
@@ -29,19 +29,19 @@ Calculate the commutation numbers for the given parameters, using the mortality
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable}: Calculate the commutation numbers for the given
+\item \code{commutationNumbers(mortalityTable)}: Calculate the commutation numbers for the given
 parameters, using the mortality table and an interest rate
 
-\item \code{numeric}: Calculate the commutation numbers for the given
+\item \code{commutationNumbers(numeric)}: Calculate the commutation numbers for the given
 death probabilities (passed as a numeric vector with argument
 name "object"), ages and an interest rate
 Return value is a list of data frames
 
-\item \code{pensionTable}: Calculate the commutation numbers for the given
+\item \code{commutationNumbers(pensionTable)}: Calculate the commutation numbers for the given
 parameters, using the pension table and an interest rate
 Return value is a list of data frames
-}}
 
+}}
 \examples{
 mortalityTables.load("Austria_Annuities")
 commutationNumbers(AVOe2005R.male, i = 0.03, YOB = 1975)
diff --git a/man/deathProbabilities.Rd b/man/deathProbabilities.Rd
index e89bcaa3022f0ef7753ac362bd37890281f21aba..7849be5f14ffccda30475d051177b8b59184ae07 100644
--- a/man/deathProbabilities.Rd
+++ b/man/deathProbabilities.Rd
@@ -44,28 +44,28 @@ Return the (cohort) death probabilities of the life table given the birth year (
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable.period}: Return the (cohort) death probabilities of the
+\item \code{deathProbabilities(mortalityTable.period)}: Return the (cohort) death probabilities of the
 life table given the birth year (if needed)
 
-\item \code{mortalityTable.ageShift}: Return the (cohort) death probabilities of the
+\item \code{deathProbabilities(mortalityTable.ageShift)}: Return the (cohort) death probabilities of the
 life table given the birth year (if needed)
 
-\item \code{mortalityTable.trendProjection}: Return the (cohort) death probabilities of the
+\item \code{deathProbabilities(mortalityTable.trendProjection)}: Return the (cohort) death probabilities of the
 life table given the birth year (if needed)
 
-\item \code{mortalityTable.improvementFactors}: Return the (cohort) death probabilities of the
+\item \code{deathProbabilities(mortalityTable.improvementFactors)}: Return the (cohort) death probabilities of the
 life table given the birth year (if needed)
 
-\item \code{mortalityTable.mixed}: Return the (cohort) death probabilities of the
+\item \code{deathProbabilities(mortalityTable.mixed)}: Return the (cohort) death probabilities of the
 life table given the birth year (if needed)
 
-\item \code{mortalityTable.jointLives}: Return the (cohort) death probabilities of the
+\item \code{deathProbabilities(mortalityTable.jointLives)}: Return the (cohort) death probabilities of the
 life table given the birth year (if needed)
 
-\item \code{mortalityTable.observed}: Return the (cohort) death probabilities of the
+\item \code{deathProbabilities(mortalityTable.observed)}: Return the (cohort) death probabilities of the
 life table given the birth year (if needed)
-}}
 
+}}
 \examples{
 mortalityTables.load("Austria_Annuities")
 deathProbabilities(AVOe2005R.male, YOB = 1975)
diff --git a/man/getCohortTable.Rd b/man/getCohortTable.Rd
index 0b868ababdbdebfab5078a9a78f66ea14bd4599c..a468a74e70a35dc3028b5d0ebd2c3ad1c98ae097 100644
--- a/man/getCohortTable.Rd
+++ b/man/getCohortTable.Rd
@@ -21,10 +21,10 @@ Return the cohort life table as a \code{mortalityTable.period} object
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable}: Return the cohort life table as a
+\item \code{getCohortTable(mortalityTable)}: Return the cohort life table as a
 \code{mortalityTable.period} object
-}}
 
+}}
 \examples{
 mortalityTables.load("Austria_Annuities")
 tb75 = getCohortTable(AVOe2005R.male, YOB = 1975)
diff --git a/man/getOmega.Rd b/man/getOmega.Rd
index 0fa3c94d29d8b818a8056b9145abfcbfcb147f9d..23b189ef97a4188e0ea0f56ecc45db7f2e3eead8 100644
--- a/man/getOmega.Rd
+++ b/man/getOmega.Rd
@@ -27,15 +27,15 @@ Return the maximum age of the life table
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable.period}: Return the maximum age of the period life table
+\item \code{getOmega(mortalityTable.period)}: Return the maximum age of the period life table
 
-\item \code{mortalityTable.mixed}: Return the maximum age of the mixed life table
+\item \code{getOmega(mortalityTable.mixed)}: Return the maximum age of the mixed life table
 
-\item \code{mortalityTable.jointLives}: Return the maximum age of the joint lives mortality table (returns the maximum age of the first table used for joint lives, as the ages of the joint lives are now known to the function)
+\item \code{getOmega(mortalityTable.jointLives)}: Return the maximum age of the joint lives mortality table (returns the maximum age of the first table used for joint lives, as the ages of the joint lives are now known to the function)
 
-\item \code{mortalityTable.observed}: Return the maximum age of the life table
-}}
+\item \code{getOmega(mortalityTable.observed)}: Return the maximum age of the life table
 
+}}
 \examples{
 mortalityTables.load("Austria_Annuities")
 getOmega(AVOe2005R.male)
diff --git a/man/getPeriodTable.Rd b/man/getPeriodTable.Rd
index b2172943a85435af4301e386ce4ef616207e6440..55bc3b67f28a86b5828e7380d601af928f1216fd 100644
--- a/man/getPeriodTable.Rd
+++ b/man/getPeriodTable.Rd
@@ -22,10 +22,10 @@ Return the period life table as a \code{mortalityTable.period} object
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable}: Return the period life table as a
+\item \code{getPeriodTable(mortalityTable)}: Return the period life table as a
 \code{mortalityTable.period} object
-}}
 
+}}
 \examples{
 mortalityTables.load("Austria_Annuities")
 tb17 = getPeriodTable(AVOe2005R.male, Period = 2017)
diff --git a/man/lifeTable.Rd b/man/lifeTable.Rd
index f65dff43ac2c9a24f2cf85456014b03f79fed5ef..c6e28ed447af1d25843df2ac58ed7aac94a50a99 100644
--- a/man/lifeTable.Rd
+++ b/man/lifeTable.Rd
@@ -29,16 +29,16 @@ Return the lifetable object (package lifecontingencies) for the cohort life tabl
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable}: Return the lifetable object (package lifecontingencies)
+\item \code{lifeTable(mortalityTable)}: Return the lifetable object (package lifecontingencies)
 for the cohort life table
 
-\item \code{array}: Return the lifetable object (package lifecontingencies) from the mortalityTable objects stored in the array
+\item \code{lifeTable(array)}: Return the lifetable object (package lifecontingencies) from the mortalityTable objects stored in the array
 
-\item \code{list}: Return the lifetable object (package lifecontingencies)  from the mortalityTable objects stored in the list
+\item \code{lifeTable(list)}: Return the lifetable object (package lifecontingencies)  from the mortalityTable objects stored in the list
 
-\item \code{NULL}: Empty dummy function to handle unassigned variables
-}}
+\item \code{lifeTable(`NULL`)}: Empty dummy function to handle unassigned variables
 
+}}
 \examples{
 if (requireNamespace("lifecontingencies", quietly = TRUE)) {
 library("lifecontingencies")
diff --git a/man/mT.cleanup.Rd b/man/mT.cleanup.Rd
index 54658f441b1c753d21febea00920c62a2ae25fbe..640ad3cc8463a672c0621dcc201cad3dd34d79b9 100644
--- a/man/mT.cleanup.Rd
+++ b/man/mT.cleanup.Rd
@@ -51,21 +51,21 @@ or mixed tables), all components are cleaned.
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable}: Clean up and remove all non-essential data from the mortalityTable object
+\item \code{mT.cleanup(mortalityTable)}: Clean up and remove all non-essential data from the mortalityTable object
 
-\item \code{mortalityTable.period}: Clean up and remove all non-essential data from the mortalityTable.period object
+\item \code{mT.cleanup(mortalityTable.period)}: Clean up and remove all non-essential data from the mortalityTable.period object
 
-\item \code{mortalityTable.trendProjection}: Clean up and remove all non-essential data from the mortalityTable.trendProjection object
+\item \code{mT.cleanup(mortalityTable.trendProjection)}: Clean up and remove all non-essential data from the mortalityTable.trendProjection object
 
-\item \code{array}: Clean up and remove all non-essential data from the mortalityTable objects stored in the array
+\item \code{mT.cleanup(array)}: Clean up and remove all non-essential data from the mortalityTable objects stored in the array
 
-\item \code{list}: Clean up and remove all non-essential data from the mortalityTable objects stored in the list
+\item \code{mT.cleanup(list)}: Clean up and remove all non-essential data from the mortalityTable objects stored in the list
 
-\item \code{pensionTable}: Clean up and remove all non-essential data from the mortalityTable objects stored in the array
+\item \code{mT.cleanup(pensionTable)}: Clean up and remove all non-essential data from the mortalityTable objects stored in the array
 
-\item \code{mortalityTable.observed}: Clean up the internal data of the mortality table
-}}
+\item \code{mT.cleanup(mortalityTable.observed)}: Clean up the internal data of the mortality table
 
+}}
 \examples{
 mortalityTables.load("Austria_Census")
 # Whittaker-Henderson smoothing stores the raw input and the weights in the
diff --git a/man/mT.round.Rd b/man/mT.round.Rd
index 7762b357ddc4175a41acf51f8215b3b86aec8fd4..ade7f1fadf5af2c564160b5364d84968baf75835 100644
--- a/man/mT.round.Rd
+++ b/man/mT.round.Rd
@@ -42,23 +42,23 @@ numerical digits. For pensionTable objects, the function is applied to all compo
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable}: Round the given mortalityTable to a given number of digits
+\item \code{mT.round(mortalityTable)}: Round the given mortalityTable to a given number of digits
 
-\item \code{mortalityTable.period}: Round the given period mortality table to a given number of digits (base table and loadings)
+\item \code{mT.round(mortalityTable.period)}: Round the given period mortality table to a given number of digits (base table and loadings)
 
-\item \code{mortalityTable.trendProjection}: Round the given mortalityTable with trend projection to a given number of digits (base table, loadings and trend(s))
+\item \code{mT.round(mortalityTable.trendProjection)}: Round the given mortalityTable with trend projection to a given number of digits (base table, loadings and trend(s))
 
-\item \code{mortalityTable.improvementFactors}: Round the given mortalityTable with improvement factors to a given number of digits (base table, loadings and improvement factors)
+\item \code{mT.round(mortalityTable.improvementFactors)}: Round the given mortalityTable with improvement factors to a given number of digits (base table, loadings and improvement factors)
 
-\item \code{array}: Round the mortalityTables stored in an array to a given number of digits
+\item \code{mT.round(array)}: Round the mortalityTables stored in an array to a given number of digits
 
-\item \code{list}: Round the mortalityTables stored in a list to a given number of digits
+\item \code{mT.round(list)}: Round the mortalityTables stored in a list to a given number of digits
 
-\item \code{pensionTable}: Round all components of a pensionTable to a given number of digits
+\item \code{mT.round(pensionTable)}: Round all components of a pensionTable to a given number of digits
 
-\item \code{mortalityTable.observed}: Return the life table with the values rounded to the given number of digits
-}}
+\item \code{mT.round(mortalityTable.observed)}: Return the life table with the values rounded to the given number of digits
 
+}}
 \examples{
 mortalityTables.load("Austria_Census")
 AT.rounded1 = mT.round(mort.AT.census.2011.male, 1)
diff --git a/man/mT.setTrend.Rd b/man/mT.setTrend.Rd
index f6dc57a7160f46eefc976f949f1e8ef48ac7b222..d5296da7be71d238eb94b9bc27e361d36feff33c 100644
--- a/man/mT.setTrend.Rd
+++ b/man/mT.setTrend.Rd
@@ -37,6 +37,6 @@ Set/Add a trend vector for the probabilities of the given \code{mortalityTable}
 }
 \section{Functions}{
 \itemize{
-\item \code{mT.addTrend}: Add a trend to the mortality table (returns a mortalityTable.trendProjection obect)
-}}
+\item \code{mT.addTrend()}: Add a trend to the mortality table (returns a mortalityTable.trendProjection obect)
 
+}}
diff --git a/man/mortalityImprovement.Rd b/man/mortalityImprovement.Rd
index 793aa39a91362815e86a91e39fd84e0f22f79b4c..e6286114df49dde9fc05f0d358e02adc05d04aa4 100644
--- a/man/mortalityImprovement.Rd
+++ b/man/mortalityImprovement.Rd
@@ -24,10 +24,10 @@ Return the mortality trend (yearly log-death-probability improvement) of the giv
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable}: Return the yearly log-mortality improvement of the
+\item \code{mortalityImprovement(mortalityTable)}: Return the yearly log-mortality improvement of the
 life table given the birth or observation year
-}}
 
+}}
 \examples{
 mortalityTables.load("Austria_Annuities")
 # AVOe 2005R includes a trend decline by default, compare the exact table
diff --git a/man/pT.calculateTotalMortality.Rd b/man/pT.calculateTotalMortality.Rd
index 982f38165f8851d386f2fa973a0facb0785cf701..0790de529dd7f0fa0caf7bc736953376aa911a39 100644
--- a/man/pT.calculateTotalMortality.Rd
+++ b/man/pT.calculateTotalMortality.Rd
@@ -35,10 +35,10 @@ table AVÖ 2018-P or the German Heubeck Table DAV 2005-G.
 }
 \section{Functions}{
 \itemize{
-\item \code{pT.recalculateTotalMortality}: Calculate the total mortality of a
+\item \code{pT.recalculateTotalMortality()}: Calculate the total mortality of a
 pension table and assign it to the \code{qgx} slot of that table.
-}}
 
+}}
 \references{
 R. Kainhofer, J. Hirz, A. Schubert. AVÖ 2018-P: Rechnungsgrundlagen für die Pensionsversicherung. Dokumentation der Pensionstafel. AVÖ-Arbeitskreis Rechnungsgrundlagen, 2008. \url{https://avoe.at/rechnungsgrundlagen/pensionskassen/}
 }
diff --git a/man/periodDeathProbabilities.Rd b/man/periodDeathProbabilities.Rd
index 6ba2b39abbfae0bd27d488cb9bf2c276d06de81d..671d6bb1cd04de09b553701261f2c6502d236794 100644
--- a/man/periodDeathProbabilities.Rd
+++ b/man/periodDeathProbabilities.Rd
@@ -52,31 +52,31 @@ observation year
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable.period}: Return the (period) death probabilities
+\item \code{periodDeathProbabilities(mortalityTable.period)}: Return the (period) death probabilities
 of the life table for a given observation year
 
-\item \code{mortalityTable.ageShift}: Return the (period) death probabilities
+\item \code{periodDeathProbabilities(mortalityTable.ageShift)}: Return the (period) death probabilities
 of the life table for a given observation year
 
-\item \code{mortalityTable.trendProjection}: Return the (period) death probabilities
+\item \code{periodDeathProbabilities(mortalityTable.trendProjection)}: Return the (period) death probabilities
 of the life table for a given observation year
 
-\item \code{mortalityTable.improvementFactors}: Return the (period) death probabilities
+\item \code{periodDeathProbabilities(mortalityTable.improvementFactors)}: Return the (period) death probabilities
 of the life table for a given observation year
 
-\item \code{mortalityTable.mixed}: Return the (period) death probabilities
+\item \code{periodDeathProbabilities(mortalityTable.mixed)}: Return the (period) death probabilities
 of the life table for a given observation year
 
-\item \code{mortalityTable.jointLives}: Return the (period) death probabilities
+\item \code{periodDeathProbabilities(mortalityTable.jointLives)}: Return the (period) death probabilities
 of the joint lives mortality table for a given observation year
 
-\item \code{mortalityTable.observed}: Return the (period) death probabilities
+\item \code{periodDeathProbabilities(mortalityTable.observed)}: Return the (period) death probabilities
 of the life table for a given observation year
 If the observed mortality table does not provide data
 for the desired period, the period closest to the
 `Period` argument will be used and a warning printed.
-}}
 
+}}
 \examples{
 mortalityTables.load("Austria_Annuities")
 periodDeathProbabilities(AVOe2005R.male, Period = 1975)
diff --git a/man/periodTransitionProbabilities.Rd b/man/periodTransitionProbabilities.Rd
index b38701d5045db76fa2bbdade2079c798d89ae3ea..7e1b7c97c79eeac8110f893e1362c5341bba6403 100644
--- a/man/periodTransitionProbabilities.Rd
+++ b/man/periodTransitionProbabilities.Rd
@@ -47,9 +47,9 @@ Return all period transition probabilities of the pension table
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{pensionTable}: Return all transition probabilities of the pension table for the period Period
-}}
+\item \code{periodTransitionProbabilities(pensionTable)}: Return all transition probabilities of the pension table for the period Period
 
+}}
 \examples{
 pensionTables.load("USA_PensionPlans")
 # transitionProbabilities internally calls periodTransitionProbabilities
diff --git a/man/setLoading.Rd b/man/setLoading.Rd
index 927e6e2cb156e9669cb45e4254b13691a626c757..eefb4c635733bd3811a6c7a57e29afdb9f12e028 100644
--- a/man/setLoading.Rd
+++ b/man/setLoading.Rd
@@ -19,9 +19,9 @@ Return a copy of the table with an additional loading added
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable}: Return the life table with the given loading set
-}}
+\item \code{setLoading(mortalityTable)}: Return the life table with the given loading set
 
+}}
 \examples{
 mortalityTables.load("Austria_Census")
 # Austrian census mortality 2011 reduced by 30\%
diff --git a/man/setModification.Rd b/man/setModification.Rd
index 933535e8a82cdc1b2cef331e1ac5f0159f2b5e58..9c6cb4e2cf6dbec742c72459a08af2aa2e15811d 100644
--- a/man/setModification.Rd
+++ b/man/setModification.Rd
@@ -19,9 +19,9 @@ Return a copy of the table with the given modification function added
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable}: Return the life table with the given modification set
-}}
+\item \code{setModification(mortalityTable)}: Return the life table with the given modification set
 
+}}
 \examples{
 mortalityTables.load("Austria_Census")
 # Austrian census mortality 2011, with a lower floor of 0.1\% death probability
diff --git a/man/transitionProbabilities.Rd b/man/transitionProbabilities.Rd
index 73bab71a1394aeab63b0d3fb2d448b6db79e8b04..474f2fc97fdc90ef85f50797e42f8f7e2a947b69 100644
--- a/man/transitionProbabilities.Rd
+++ b/man/transitionProbabilities.Rd
@@ -56,9 +56,9 @@ Return all transition probabilities of the pension table (generational probabili
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{pensionTable}: Return all transition probabilities of the pension table for the generation YOB
-}}
+\item \code{transitionProbabilities(pensionTable)}: Return all transition probabilities of the pension table for the generation YOB
 
+}}
 \examples{
 pensionTables.load("USA_PensionPlans")
 transitionProbabilities(RP2014.male, YOB = 1962)
diff --git a/man/undampenTrend.Rd b/man/undampenTrend.Rd
index 2886094c77ac6477d0fcc87bca7efd1dd5e7324d..26e1ec6361833f664cded5678a6f48602962e6a6 100644
--- a/man/undampenTrend.Rd
+++ b/man/undampenTrend.Rd
@@ -17,10 +17,10 @@ Return a \code{mortalityTable.trendProjection} object with the trend damping rem
 }
 \section{Methods (by class)}{
 \itemize{
-\item \code{mortalityTable.trendProjection}: Return a \code{mortalityTable.trendProjection}
+\item \code{undampenTrend(mortalityTable.trendProjection)}: Return a \code{mortalityTable.trendProjection}
 object with the trend damping removed.
-}}
 
+}}
 \examples{
 mortalityTables.load("Austria_Annuities")
 AVOe2005R.male.undamped = undampenTrend(AVOe2005R.male)
diff --git a/vignettes/international-mortality-tables-overview.Rmd b/vignettes/international-mortality-tables-overview.Rmd
index 8cfef45cc310c25d0c344f9b310d6edab29cf3d7..2296a030decc75597b22598b97a823f1e66414dd 100644
--- a/vignettes/international-mortality-tables-overview.Rmd
+++ b/vignettes/international-mortality-tables-overview.Rmd
@@ -191,7 +191,7 @@ plotMortalityTables(RR67, EROM85.male, EROF85.female, EROM.G1950.male.av, EROF.G
 #### Census tables
 
 * gender-specific period tables
-  * male+female, unisex only 2000/02 and 2010/12; ages 0--95, from 1930 on 0--100
+  * male+female, unisex only starting 2000/02; ages 0--95, from 1930 on 0--100
 * Based on the official census data:
   * 1868/71
   * 1879/82
@@ -206,6 +206,7 @@ plotMortalityTables(RR67, EROM85.male, EROF85.female, EROM.G1950.male.av, EROF.G
   * 1990/92
   * 2000/02
   * 2010/12
+  * 2020/22
 * Usage with the `MortalityTables` package:
 ```{r OeVSt}
 mortalityTables.load("Austria_Census")
@@ -239,9 +240,9 @@ mort.AT.MCMC
 * Source: R. Kainhofer, J. Hirz, A. Schubert: AVÖ 2018-P - Rechnungsgrundlagen für die Pensionsversicherung, Dokumentation der Pensionstafel, Arbeitskreis Rechnungsgrundlagen, Aktuarvereinigung Österreichs (AVÖ), 30. August 2018. https://oefdv.avoe.at/rechnungsgrundlagen/
 
 
-### Observed population mortalities 1947--2016 (by Statistik Austria)
+### Observed population mortalities 1947--2022 (by Statistik Austria)
 
-* Gender-specific observations of the mortalities from1947
+* Gender-specific observations of the mortalities from 1947
 * Provided by Statistik Austria (no formal publication of the tables), can be used freely with attribution
 * Usage with the `MortalityTables` package:
 ```{r AT.Observation, results="hide"}
diff --git a/vignettes/using-the-mortalityTables-package.html b/vignettes/using-the-mortalityTables-package.html
index 5b7ff8f3f08ade230ee8394770a773ef48a2c03f..afeaf15bb18c626c8095aa30365d7f43a92e95b5 100644
--- a/vignettes/using-the-mortalityTables-package.html
+++ b/vignettes/using-the-mortalityTables-package.html
@@ -12,94 +12,107 @@
 
 <meta name="author" content="Reinhold Kainhofer, reinhold@kainhofer.com" />
 
-<meta name="date" content="2020-12-13" />
+<meta name="date" content="2023-10-18" />
 
 <title>Using the MortalityTables Package</title>
 
-<script>// Hide empty <a> tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) -->
-// v0.0.1
-// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020.
-
-document.addEventListener('DOMContentLoaded', function() {
-  const codeList = document.getElementsByClassName("sourceCode");
-  for (var i = 0; i < codeList.length; i++) {
-    var linkList = codeList[i].getElementsByTagName('a');
-    for (var j = 0; j < linkList.length; j++) {
-      if (linkList[j].innerHTML === "") {
-        linkList[j].setAttribute('aria-hidden', 'true');
-      }
-    }
+<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+  var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+  var i, h, a;
+  for (i = 0; i < hs.length; i++) {
+    h = hs[i];
+    if (!/^h[1-6]$/i.test(h.tagName)) continue;  // it should be a header h1-h6
+    a = h.attributes;
+    while (a.length > 0) h.removeAttribute(a[0].name);
   }
 });
 </script>
 
+<style type="text/css">
+code{white-space: pre-wrap;}
+span.smallcaps{font-variant: small-caps;}
+span.underline{text-decoration: underline;}
+div.column{display: inline-block; vertical-align: top; width: 50%;}
+div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
+ul.task-list{list-style: none;}
+</style>
+
+
 
-<style type="text/css">code{white-space: pre;}</style>
+<style type="text/css">
+code {
+white-space: pre;
+}
+.sourceCode {
+overflow: visible;
+}
+</style>
 <style type="text/css" data-origin="pandoc">
-code.sourceCode > span { display: inline-block; line-height: 1.25; }
-code.sourceCode > span { color: inherit; text-decoration: inherit; }
-code.sourceCode > span:empty { height: 1.2em; }
+pre > code.sourceCode { white-space: pre; position: relative; }
+pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
+pre > code.sourceCode > span:empty { height: 1.2em; }
 .sourceCode { overflow: visible; }
-code.sourceCode { white-space: pre; position: relative; }
+code.sourceCode > span { color: inherit; text-decoration: inherit; }
 div.sourceCode { margin: 1em 0; }
 pre.sourceCode { margin: 0; }
 @media screen {
 div.sourceCode { overflow: auto; }
 }
 @media print {
-code.sourceCode { white-space: pre-wrap; }
-code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode { white-space: pre-wrap; }
+pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
 }
 pre.numberSource code
-  { counter-reset: source-line 0; }
+{ counter-reset: source-line 0; }
 pre.numberSource code > span
-  { position: relative; left: -4em; counter-increment: source-line; }
+{ position: relative; left: -4em; counter-increment: source-line; }
 pre.numberSource code > span > a:first-child::before
-  { content: counter(source-line);
-    position: relative; left: -1em; text-align: right; vertical-align: baseline;
-    border: none; display: inline-block;
-    -webkit-touch-callout: none; -webkit-user-select: none;
-    -khtml-user-select: none; -moz-user-select: none;
-    -ms-user-select: none; user-select: none;
-    padding: 0 4px; width: 4em;
-    color: #aaaaaa;
-  }
-pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa;  padding-left: 4px; }
+{ content: counter(source-line);
+position: relative; left: -1em; text-align: right; vertical-align: baseline;
+border: none; display: inline-block;
+-webkit-touch-callout: none; -webkit-user-select: none;
+-khtml-user-select: none; -moz-user-select: none;
+-ms-user-select: none; user-select: none;
+padding: 0 4px; width: 4em;
+color: #aaaaaa;
+}
+pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
 div.sourceCode
-  {   }
+{ }
 @media screen {
-code.sourceCode > span > a:first-child::before { text-decoration: underline; }
+pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
 }
-code span.al { color: #ff0000; font-weight: bold; } /* Alert */
-code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
-code span.at { color: #7d9029; } /* Attribute */
-code span.bn { color: #40a070; } /* BaseN */
-code span.bu { } /* BuiltIn */
-code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
-code span.ch { color: #4070a0; } /* Char */
-code span.cn { color: #880000; } /* Constant */
-code span.co { color: #60a0b0; font-style: italic; } /* Comment */
-code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
-code span.do { color: #ba2121; font-style: italic; } /* Documentation */
-code span.dt { color: #902000; } /* DataType */
-code span.dv { color: #40a070; } /* DecVal */
-code span.er { color: #ff0000; font-weight: bold; } /* Error */
-code span.ex { } /* Extension */
-code span.fl { color: #40a070; } /* Float */
-code span.fu { color: #06287e; } /* Function */
-code span.im { } /* Import */
-code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
-code span.kw { color: #007020; font-weight: bold; } /* Keyword */
-code span.op { color: #666666; } /* Operator */
-code span.ot { color: #007020; } /* Other */
-code span.pp { color: #bc7a00; } /* Preprocessor */
-code span.sc { color: #4070a0; } /* SpecialChar */
-code span.ss { color: #bb6688; } /* SpecialString */
-code span.st { color: #4070a0; } /* String */
-code span.va { color: #19177c; } /* Variable */
-code span.vs { color: #4070a0; } /* VerbatimString */
-code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
-
+code span.al { color: #ff0000; font-weight: bold; } 
+code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } 
+code span.at { color: #7d9029; } 
+code span.bn { color: #40a070; } 
+code span.bu { color: #008000; } 
+code span.cf { color: #007020; font-weight: bold; } 
+code span.ch { color: #4070a0; } 
+code span.cn { color: #880000; } 
+code span.co { color: #60a0b0; font-style: italic; } 
+code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } 
+code span.do { color: #ba2121; font-style: italic; } 
+code span.dt { color: #902000; } 
+code span.dv { color: #40a070; } 
+code span.er { color: #ff0000; font-weight: bold; } 
+code span.ex { } 
+code span.fl { color: #40a070; } 
+code span.fu { color: #06287e; } 
+code span.im { color: #008000; font-weight: bold; } 
+code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } 
+code span.kw { color: #007020; font-weight: bold; } 
+code span.op { color: #666666; } 
+code span.ot { color: #007020; } 
+code span.pp { color: #bc7a00; } 
+code span.sc { color: #4070a0; } 
+code span.ss { color: #bb6688; } 
+code span.st { color: #4070a0; } 
+code span.va { color: #19177c; } 
+code span.vs { color: #4070a0; } 
+code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } 
 </style>
 <script>
 // apply pandoc div.sourceCode style to pre.sourceCode instead
@@ -108,13 +121,20 @@ code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warni
   for (var i = 0; i < sheets.length; i++) {
     if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
     try { var rules = sheets[i].cssRules; } catch (e) { continue; }
-    for (var j = 0; j < rules.length; j++) {
+    var j = 0;
+    while (j < rules.length) {
       var rule = rules[j];
       // check if there is a div.sourceCode rule
-      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") continue;
+      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
+        j++;
+        continue;
+      }
       var style = rule.style.cssText;
       // check if color or background-color is set
-      if (rule.style.color === '' && rule.style.backgroundColor === '') continue;
+      if (rule.style.color === '' && rule.style.backgroundColor === '') {
+        j++;
+        continue;
+      }
       // replace div.sourceCode by a pre.sourceCode rule
       sheets[i].deleteRule(j);
       sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
@@ -125,6 +145,7 @@ code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warni
 
 
 
+
 <style type="text/css">body {
 background-color: #fff;
 margin: 1em auto;
@@ -319,229 +340,320 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 
 <h1 class="title toc-ignore">Using the MortalityTables Package</h1>
 <h4 class="author">Reinhold Kainhofer, <a href="mailto:reinhold@kainhofer.com" class="email">reinhold@kainhofer.com</a></h4>
-<h4 class="date">2020-12-13</h4>
+<h4 class="date">2023-10-18</h4>
 
 
 <div id="TOC">
 <ul>
-<li><a href="#types-of-life-tables"><span class="toc-section-number">1</span> Types of Life Tables</a></li>
-<li><a href="#loading-the-mortalitytables-package"><span class="toc-section-number">2</span> Loading the MortalityTables package</a></li>
-<li><a href="#provided-data-sets"><span class="toc-section-number">3</span> Provided Data Sets</a></li>
-<li><a href="#working-with-life-table-objects"><span class="toc-section-number">4</span> Working with life table objects</a><ul>
-<li><a href="#plotting-life-tables"><span class="toc-section-number">4.1</span> Plotting life tables</a></li>
-<li><a href="#obtaining-period-and-cohort-death-probabilities"><span class="toc-section-number">4.2</span> Obtaining period and cohort death probabilities</a></li>
-<li><a href="#other-data-extraction-functions-from-life-tables"><span class="toc-section-number">4.3</span> Other data extraction functions from life tables</a></li>
-<li><a href="#dimensional-information"><span class="toc-section-number">4.4</span> Dimensional information</a></li>
+<li><a href="#types-of-life-tables" id="toc-types-of-life-tables"><span class="toc-section-number">1</span> Types of Life Tables</a></li>
+<li><a href="#loading-the-mortalitytables-package" id="toc-loading-the-mortalitytables-package"><span class="toc-section-number">2</span> Loading the MortalityTables
+package</a></li>
+<li><a href="#provided-data-sets" id="toc-provided-data-sets"><span class="toc-section-number">3</span> Provided Data Sets</a></li>
+<li><a href="#working-with-life-table-objects" id="toc-working-with-life-table-objects"><span class="toc-section-number">4</span> Working with life table objects</a>
+<ul>
+<li><a href="#plotting-life-tables" id="toc-plotting-life-tables"><span class="toc-section-number">4.1</span> Plotting life tables</a></li>
+<li><a href="#obtaining-period-and-cohort-death-probabilities" id="toc-obtaining-period-and-cohort-death-probabilities"><span class="toc-section-number">4.2</span> Obtaining period and cohort death
+probabilities</a></li>
+<li><a href="#other-data-extraction-functions-from-life-tables" id="toc-other-data-extraction-functions-from-life-tables"><span class="toc-section-number">4.3</span> Other data extraction functions
+from life tables</a></li>
+<li><a href="#dimensional-information" id="toc-dimensional-information"><span class="toc-section-number">4.4</span> Dimensional information</a></li>
 </ul></li>
-<li><a href="#creating-a-life-table-object"><span class="toc-section-number">5</span> Creating a life table object</a><ul>
-<li><a href="#period-life-tables"><span class="toc-section-number">5.1</span> Period life tables</a></li>
-<li><a href="#cohort-life-tables-with-trend-projection"><span class="toc-section-number">5.2</span> Cohort life tables with trend projection</a></li>
-<li><a href="#cohort-life-tables-with-age-shift"><span class="toc-section-number">5.3</span> Cohort life tables with age-shift</a></li>
+<li><a href="#creating-a-life-table-object" id="toc-creating-a-life-table-object"><span class="toc-section-number">5</span> Creating a life table object</a>
+<ul>
+<li><a href="#period-life-tables" id="toc-period-life-tables"><span class="toc-section-number">5.1</span> Period life tables</a></li>
+<li><a href="#cohort-life-tables-with-trend-projection" id="toc-cohort-life-tables-with-trend-projection"><span class="toc-section-number">5.2</span> Cohort life tables with trend
+projection</a></li>
+<li><a href="#cohort-life-tables-with-age-shift" id="toc-cohort-life-tables-with-age-shift"><span class="toc-section-number">5.3</span> Cohort life tables with
+age-shift</a></li>
 </ul></li>
-<li><a href="#modifying-life-table-objects"><span class="toc-section-number">6</span> Modifying life table objects</a><ul>
-<li><a href="#copying-life-tables"><span class="toc-section-number">6.1</span> Copying life tables</a></li>
-<li><a href="#adding-a-security-loading-to-the-raw-probabilities"><span class="toc-section-number">6.2</span> Adding a security loading to the raw probabilities</a></li>
-<li><a href="#adding-a-modification-to-the-raw-probabilities"><span class="toc-section-number">6.3</span> Adding a modification to the raw probabilities</a></li>
+<li><a href="#modifying-life-table-objects" id="toc-modifying-life-table-objects"><span class="toc-section-number">6</span> Modifying life table objects</a>
+<ul>
+<li><a href="#copying-life-tables" id="toc-copying-life-tables"><span class="toc-section-number">6.1</span> Copying life tables</a></li>
+<li><a href="#adding-a-security-loading-to-the-raw-probabilities" id="toc-adding-a-security-loading-to-the-raw-probabilities"><span class="toc-section-number">6.2</span> Adding a security loading to the
+raw probabilities</a></li>
+<li><a href="#adding-a-modification-to-the-raw-probabilities" id="toc-adding-a-modification-to-the-raw-probabilities"><span class="toc-section-number">6.3</span> Adding a modification to the raw
+probabilities</a></li>
 </ul></li>
-<li><a href="#creating-mortality-tables-from-data-and-modifying-them-using-various-helper-functions"><span class="toc-section-number">7</span> Creating mortality tables from data and modifying them using various helper functions</a></li>
-<li><a href="#pension-tables"><span class="toc-section-number">8</span> Pension Tables</a></li>
+<li><a href="#creating-mortality-tables-from-data-and-modifying-them-using-various-helper-functions" id="toc-creating-mortality-tables-from-data-and-modifying-them-using-various-helper-functions"><span class="toc-section-number">7</span> Creating mortality tables from data
+and modifying them using various helper functions</a></li>
+<li><a href="#pension-tables" id="toc-pension-tables"><span class="toc-section-number">8</span> Pension Tables</a></li>
 </ul>
 </div>
 
-<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1"></a>required &lt;-<span class="st"> </span><span class="kw">c</span>(<span class="st">&quot;tidyverse&quot;</span>)</span>
-<span id="cb1-2"><a href="#cb1-2"></a><span class="cf">if</span> (<span class="op">!</span><span class="kw">all</span>(<span class="kw">sapply</span>(required, </span>
-<span id="cb1-3"><a href="#cb1-3"></a>                <span class="cf">function</span>(pkg) <span class="kw">requireNamespace</span>(pkg, <span class="dt">quietly =</span> <span class="ot">TRUE</span>)))) {</span>
-<span id="cb1-4"><a href="#cb1-4"></a>  <span class="kw">message</span>(<span class="kw">paste</span>(<span class="st">&quot;This vignette needs the followig packages:</span><span class="ch">\n\t</span><span class="st">&quot;</span>, </span>
-<span id="cb1-5"><a href="#cb1-5"></a>                <span class="kw">paste</span>(required, <span class="dt">collapse =</span> <span class="st">&quot; &quot;</span>), </span>
-<span id="cb1-6"><a href="#cb1-6"></a>                <span class="st">&quot;</span><span class="ch">\n</span><span class="st">Since not all are installed, code will not be executed: &quot;</span>))</span>
-<span id="cb1-7"><a href="#cb1-7"></a>  knitr<span class="op">::</span>opts_chunk<span class="op">$</span><span class="kw">set</span>(<span class="dt">eval =</span> <span class="ot">FALSE</span>)</span>
-<span id="cb1-8"><a href="#cb1-8"></a>}</span></code></pre></div>
-<p>The MortalityTables package provides the <code>mortalityTable</code> base class and some derived classes to handle different types of mortality tables (also called life tables), mainly used for life insurance. Additionally it provides a plot function to compare multiple life tables either directly using the absolute mortalities in log-linear plots or using relative mortalities as percentages of a given reference table.</p>
-<div id="types-of-life-tables" class="section level1">
-<h1><span class="header-section-number">1</span> Types of Life Tables</h1>
+<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a>required <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">&quot;tidyverse&quot;</span>)</span>
+<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a><span class="cf">if</span> (<span class="sc">!</span><span class="fu">all</span>(<span class="fu">sapply</span>(required, </span>
+<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a>                <span class="cf">function</span>(pkg) <span class="fu">requireNamespace</span>(pkg, <span class="at">quietly =</span> <span class="cn">TRUE</span>)))) {</span>
+<span id="cb1-4"><a href="#cb1-4" tabindex="-1"></a>  <span class="fu">message</span>(<span class="fu">paste</span>(<span class="st">&quot;This vignette needs the followig packages:</span><span class="sc">\n\t</span><span class="st">&quot;</span>, </span>
+<span id="cb1-5"><a href="#cb1-5" tabindex="-1"></a>                <span class="fu">paste</span>(required, <span class="at">collapse =</span> <span class="st">&quot; &quot;</span>), </span>
+<span id="cb1-6"><a href="#cb1-6" tabindex="-1"></a>                <span class="st">&quot;</span><span class="sc">\n</span><span class="st">Since not all are installed, code will not be executed: &quot;</span>))</span>
+<span id="cb1-7"><a href="#cb1-7" tabindex="-1"></a>  knitr<span class="sc">::</span>opts_chunk<span class="sc">$</span><span class="fu">set</span>(<span class="at">eval =</span> <span class="cn">FALSE</span>)</span>
+<span id="cb1-8"><a href="#cb1-8" tabindex="-1"></a>}</span></code></pre></div>
+<p>The MortalityTables package provides the <code>mortalityTable</code>
+base class and some derived classes to handle different types of
+mortality tables (also called life tables), mainly used for life
+insurance. Additionally it provides a plot function to compare multiple
+life tables either directly using the absolute mortalities in log-linear
+plots or using relative mortalities as percentages of a given reference
+table.</p>
+<div id="types-of-life-tables" class="section level1" number="1">
+<h1><span class="header-section-number">1</span> Types of Life
+Tables</h1>
 <p>Provided types of mortality tables are:</p>
 <ul>
 <li><dl>
 <dt>Base class</dt>
-<dd>Class <code>mortalityTable</code>
+<dd>
+Class <code>mortalityTable</code>
 </dd>
 </dl></li>
 <li><dl>
 <dt>Period life table</dt>
-<dd>Class <code>mortalityTable.period(ages, deathProbs, ..., baseYear=2000)</code>
+<dd>
+Class
+<code>mortalityTable.period(ages, deathProbs, ..., baseYear=2000)</code>
 </dd>
-<dd>Death probabilities observed / predicted for one observation year; No dependency on the bith year is assumed.
+<dd>
+Death probabilities observed / predicted for one observation year; No
+dependency on the bith year is assumed.
 </dd>
 </dl></li>
 <li><dl>
 <dt>Cohort life table using age-specific trends</dt>
-<dd>Class <code>mortalityTable.trendProjection</code>
+<dd>
+Class <code>mortalityTable.trendProjection</code>
 </dd>
-<dd>Death probabilities of a given base year are projected into the future using age-specific trends <span class="math inline">\(\lambda_x\)</span>. The death probability of an <span class="math inline">\(x\)</span>-year old in year <code>baseYear + n</code> is calculated as: <span class="math display">\[q_x^{(baseYear+n)} = q_x^{(baseYear)} \cdot e^{-n\cdot\lambda_x}\]</span>
+<dd>
+Death probabilities of a given base year are projected into the future
+using age-specific trends <span class="math inline">\(\lambda_x\)</span>. The death probability of an
+<span class="math inline">\(x\)</span>-year old in year
+<code>baseYear + n</code> is calculated as: <span class="math display">\[q_x^{(baseYear+n)} = q_x^{(baseYear)} \cdot
+e^{-n\cdot\lambda_x}\]</span>
 </dd>
-<dd>Consequently, the death probabilities for a person born in year <code>YOB</code> can be calculated as <span class="math display">\[q_x^{YOB} = q_x^{(base)} \cdot e^{-(YOB+x-baseYear)\cdot \lambda_x}\]</span>
+<dd>
+Consequently, the death probabilities for a person born in year
+<code>YOB</code> can be calculated as <span class="math display">\[q_x^{YOB} = q_x^{(base)} \cdot
+e^{-(YOB+x-baseYear)\cdot \lambda_x}\]</span>
 </dd>
 </dl></li>
 <li><dl>
 <dt>Cohort life table approximation using age shift</dt>
-<dd>Class <code>mortalityTable.ageShift</code>
+<dd>
+Class <code>mortalityTable.ageShift</code>
 </dd>
-<dd>Death probabilities for cohort <span class="math inline">\(YOB\)</span> are obtained by using death probabilities for cohort <span class="math inline">\(X\)</span> and modifying the technical age with a birth-year dependent shift: <span class="math display">\[q_x^{YOB} = q_{x+shift(YOB)}^{(base)}\]</span>
+<dd>
+Death probabilities for cohort <span class="math inline">\(YOB\)</span>
+are obtained by using death probabilities for cohort <span class="math inline">\(X\)</span> and modifying the technical age with a
+birth-year dependent shift: <span class="math display">\[q_x^{YOB} =
+q_{x+shift(YOB)}^{(base)}\]</span>
 </dd>
 </dl></li>
 <li><dl>
 <dt>Observed life table</dt>
-<dd>Class <code>mortalityTable.observed</code>
+<dd>
+Class <code>mortalityTable.observed</code>
 </dd>
-<dd>Death probabilities observed during several years. The probabilities are stored as a matrix with observation year and age as dimensions.
+<dd>
+Death probabilities observed during several years. The probabilities are
+stored as a matrix with observation year and age as dimensions.
 </dd>
 </dl></li>
 <li><dl>
 <dt>Mixed life table</dt>
-<dd>Class <code>mortalityTable.mixed</code>
+<dd>
+Class <code>mortalityTable.mixed</code>
 </dd>
-<dd>Arithmetic mean of two life tables with given weights. This approach is often used to generate unisex life tables by mixing male and female mortalities with given weights (e.g. 70:30 or 40:60)
+<dd>
+Arithmetic mean of two life tables with given weights. This approach is
+often used to generate unisex life tables by mixing male and female
+mortalities with given weights (e.g. 70:30 or 40:60)
 </dd>
 </dl></li>
 <li><dl>
 <dt>Cohort life table using age-specific improvement factors</dt>
-<dd>Class <code>mortalityTable.improvementFactors</code>
+<dd>
+Class <code>mortalityTable.improvementFactors</code>
 </dd>
-<dd>Project base life table using age-specific improvement factors.
+<dd>
+Project base life table using age-specific improvement factors.
 </dd>
 </dl></li>
 <li><dl>
 <dt>Pension tables</dt>
-<dd>Class <code>pensionTable</code>
+<dd>
+Class <code>pensionTable</code>
 </dd>
-<dd>Transition probabilities for a four-state pension model (active, invalid, retirement and death, with a possible widow in the event of death).
+<dd>
+Transition probabilities for a four-state pension model (active,
+invalid, retirement and death, with a possible widow in the event of
+death).
 </dd>
 </dl></li>
 </ul>
 </div>
-<div id="loading-the-mortalitytables-package" class="section level1">
-<h1><span class="header-section-number">2</span> Loading the MortalityTables package</h1>
-<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1"></a><span class="kw">library</span>(<span class="st">&quot;MortalityTables&quot;</span>)</span></code></pre></div>
+<div id="loading-the-mortalitytables-package" class="section level1" number="2">
+<h1><span class="header-section-number">2</span> Loading the
+MortalityTables package</h1>
+<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="fu">library</span>(<span class="st">&quot;MortalityTables&quot;</span>)</span></code></pre></div>
 </div>
-<div id="provided-data-sets" class="section level1">
+<div id="provided-data-sets" class="section level1" number="3">
 <h1><span class="header-section-number">3</span> Provided Data Sets</h1>
-<p>The package provides several real-life life tables published by census bureaus and actuarial associations around the world. You can use the function <code>mortalityTables.list</code> to list all available datasets (if no argument is given) or all datasets that match the given pattern (wildcard character is *). You can then use <code>mortalityTables.load</code> to load either one single data set or all datasets that match the pattern.</p>
-<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1"></a><span class="co"># list all available data sets</span></span>
-<span id="cb3-2"><a href="#cb3-2"></a><span class="kw">mortalityTables.list</span>()</span>
-<span id="cb3-3"><a href="#cb3-3"></a><span class="co">#&gt;  [1] &quot;Austria_Annuities&quot;                  &quot;Austria_Annuities_AVOe1996R&quot;       </span></span>
-<span id="cb3-4"><a href="#cb3-4"></a><span class="co">#&gt;  [3] &quot;Austria_Annuities_AVOe2005R&quot;        &quot;Austria_Annuities_EROMF&quot;           </span></span>
-<span id="cb3-5"><a href="#cb3-5"></a><span class="co">#&gt;  [5] &quot;Austria_Annuities_RR67&quot;             &quot;Austria_Census&quot;                    </span></span>
-<span id="cb3-6"><a href="#cb3-6"></a><span class="co">#&gt;  [7] &quot;Austria_Endowments_ADSt2426_2Lives&quot; &quot;Austria_PopulationForecast&quot;        </span></span>
-<span id="cb3-7"><a href="#cb3-7"></a><span class="co">#&gt;  [9] &quot;Austria_PopulationMCMC&quot;             &quot;Austria_PopulationObserved&quot;        </span></span>
-<span id="cb3-8"><a href="#cb3-8"></a><span class="co">#&gt; [11] &quot;Austria_VUGesamtbestand_2012-16&quot;    &quot;Germany_Annuities&quot;                 </span></span>
-<span id="cb3-9"><a href="#cb3-9"></a><span class="co">#&gt; [13] &quot;Germany_Annuities_DAV1994R&quot;         &quot;Germany_Annuities_DAV2004R&quot;        </span></span>
-<span id="cb3-10"><a href="#cb3-10"></a><span class="co">#&gt; [15] &quot;Germany_Census&quot;                     &quot;Germany_Endowments&quot;                </span></span>
-<span id="cb3-11"><a href="#cb3-11"></a><span class="co">#&gt; [17] &quot;Germany_Endowments_DAV1994T&quot;        &quot;Germany_Endowments_DAV2008T&quot;       </span></span>
-<span id="cb3-12"><a href="#cb3-12"></a><span class="co">#&gt; [19] &quot;USA_Annuities&quot;                      &quot;USA_Annuities_1971IAM&quot;             </span></span>
-<span id="cb3-13"><a href="#cb3-13"></a><span class="co">#&gt; [21] &quot;USA_Annuities_1983a&quot;                &quot;USA_Annuities_1994GAR&quot;             </span></span>
-<span id="cb3-14"><a href="#cb3-14"></a><span class="co">#&gt; [23] &quot;USA_Annuities_2012IAM&quot;              &quot;USA_Annuities_Annuity2000&quot;         </span></span>
-<span id="cb3-15"><a href="#cb3-15"></a><span class="co">#&gt; [25] &quot;Austria_PK-Bestand_2010-16&quot;</span></span>
-<span id="cb3-16"><a href="#cb3-16"></a></span>
-<span id="cb3-17"><a href="#cb3-17"></a><span class="co"># list all datasets for Austria</span></span>
-<span id="cb3-18"><a href="#cb3-18"></a><span class="kw">mortalityTables.list</span>(<span class="st">&quot;Austria_*&quot;</span>)</span>
-<span id="cb3-19"><a href="#cb3-19"></a><span class="co">#&gt;  [1] &quot;Austria_Annuities&quot;                  &quot;Austria_Annuities_AVOe1996R&quot;       </span></span>
-<span id="cb3-20"><a href="#cb3-20"></a><span class="co">#&gt;  [3] &quot;Austria_Annuities_AVOe2005R&quot;        &quot;Austria_Annuities_EROMF&quot;           </span></span>
-<span id="cb3-21"><a href="#cb3-21"></a><span class="co">#&gt;  [5] &quot;Austria_Annuities_RR67&quot;             &quot;Austria_Census&quot;                    </span></span>
-<span id="cb3-22"><a href="#cb3-22"></a><span class="co">#&gt;  [7] &quot;Austria_Endowments_ADSt2426_2Lives&quot; &quot;Austria_PopulationForecast&quot;        </span></span>
-<span id="cb3-23"><a href="#cb3-23"></a><span class="co">#&gt;  [9] &quot;Austria_PopulationMCMC&quot;             &quot;Austria_PopulationObserved&quot;        </span></span>
-<span id="cb3-24"><a href="#cb3-24"></a><span class="co">#&gt; [11] &quot;Austria_VUGesamtbestand_2012-16&quot;    &quot;Austria_PK-Bestand_2010-16&quot;</span></span>
-<span id="cb3-25"><a href="#cb3-25"></a></span>
-<span id="cb3-26"><a href="#cb3-26"></a><span class="co"># Load the German annuity table DAV 2004-R</span></span>
-<span id="cb3-27"><a href="#cb3-27"></a><span class="kw">mortalityTables.load</span>(<span class="st">&quot;Germany_Annuities_DAV2004R&quot;</span>)</span>
-<span id="cb3-28"><a href="#cb3-28"></a></span>
-<span id="cb3-29"><a href="#cb3-29"></a><span class="co"># Load all Austrian annuity data sets</span></span>
-<span id="cb3-30"><a href="#cb3-30"></a><span class="kw">mortalityTables.load</span>(<span class="st">&quot;Austria_Annuities*&quot;</span>)</span>
-<span id="cb3-31"><a href="#cb3-31"></a><span class="kw">mortalityTables.load</span>(<span class="st">&quot;Austria_Census&quot;</span>)</span></code></pre></div>
-<p>In the next few sections we will always use some of the provided life tables for demonstration purposes.</p>
+<p>The package provides several real-life life tables published by
+census bureaus and actuarial associations around the world. You can use
+the function <code>mortalityTables.list</code> to list all available
+datasets (if no argument is given) or all datasets that match the given
+pattern (wildcard character is *). You can then use
+<code>mortalityTables.load</code> to load either one single data set or
+all datasets that match the pattern.</p>
+<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="co"># list all available data sets</span></span>
+<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a><span class="fu">mortalityTables.list</span>()</span>
+<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a><span class="co">#&gt;  [1] &quot;Austria_Annuities&quot;                  &quot;Austria_Annuities_AVOe1996R&quot;       </span></span>
+<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a><span class="co">#&gt;  [3] &quot;Austria_Annuities_AVOe2005R&quot;        &quot;Austria_Annuities_EROMF&quot;           </span></span>
+<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a><span class="co">#&gt;  [5] &quot;Austria_Annuities_RR67&quot;             &quot;Austria_Census&quot;                    </span></span>
+<span id="cb3-6"><a href="#cb3-6" tabindex="-1"></a><span class="co">#&gt;  [7] &quot;Austria_Endowments_ADSt2426_2Lives&quot; &quot;Austria_PopulationForecast&quot;        </span></span>
+<span id="cb3-7"><a href="#cb3-7" tabindex="-1"></a><span class="co">#&gt;  [9] &quot;Austria_PopulationMCMC&quot;             &quot;Austria_PopulationObserved&quot;        </span></span>
+<span id="cb3-8"><a href="#cb3-8" tabindex="-1"></a><span class="co">#&gt; [11] &quot;Austria_VUGesamtbestand_2012-16&quot;    &quot;Germany_Annuities&quot;                 </span></span>
+<span id="cb3-9"><a href="#cb3-9" tabindex="-1"></a><span class="co">#&gt; [13] &quot;Germany_Annuities_DAV1994R&quot;         &quot;Germany_Annuities_DAV2004R&quot;        </span></span>
+<span id="cb3-10"><a href="#cb3-10" tabindex="-1"></a><span class="co">#&gt; [15] &quot;Germany_Census&quot;                     &quot;Germany_Endowments&quot;                </span></span>
+<span id="cb3-11"><a href="#cb3-11" tabindex="-1"></a><span class="co">#&gt; [17] &quot;Germany_Endowments_DAV1994T&quot;        &quot;Germany_Endowments_DAV2008T&quot;       </span></span>
+<span id="cb3-12"><a href="#cb3-12" tabindex="-1"></a><span class="co">#&gt; [19] &quot;USA_Annuities&quot;                      &quot;USA_Annuities_1971IAM&quot;             </span></span>
+<span id="cb3-13"><a href="#cb3-13" tabindex="-1"></a><span class="co">#&gt; [21] &quot;USA_Annuities_1983a&quot;                &quot;USA_Annuities_1994GAR&quot;             </span></span>
+<span id="cb3-14"><a href="#cb3-14" tabindex="-1"></a><span class="co">#&gt; [23] &quot;USA_Annuities_2012IAM&quot;              &quot;USA_Annuities_Annuity2000&quot;</span></span>
+<span id="cb3-15"><a href="#cb3-15" tabindex="-1"></a></span>
+<span id="cb3-16"><a href="#cb3-16" tabindex="-1"></a><span class="co"># list all datasets for Austria</span></span>
+<span id="cb3-17"><a href="#cb3-17" tabindex="-1"></a><span class="fu">mortalityTables.list</span>(<span class="st">&quot;Austria_*&quot;</span>)</span>
+<span id="cb3-18"><a href="#cb3-18" tabindex="-1"></a><span class="co">#&gt;  [1] &quot;Austria_Annuities&quot;                  &quot;Austria_Annuities_AVOe1996R&quot;       </span></span>
+<span id="cb3-19"><a href="#cb3-19" tabindex="-1"></a><span class="co">#&gt;  [3] &quot;Austria_Annuities_AVOe2005R&quot;        &quot;Austria_Annuities_EROMF&quot;           </span></span>
+<span id="cb3-20"><a href="#cb3-20" tabindex="-1"></a><span class="co">#&gt;  [5] &quot;Austria_Annuities_RR67&quot;             &quot;Austria_Census&quot;                    </span></span>
+<span id="cb3-21"><a href="#cb3-21" tabindex="-1"></a><span class="co">#&gt;  [7] &quot;Austria_Endowments_ADSt2426_2Lives&quot; &quot;Austria_PopulationForecast&quot;        </span></span>
+<span id="cb3-22"><a href="#cb3-22" tabindex="-1"></a><span class="co">#&gt;  [9] &quot;Austria_PopulationMCMC&quot;             &quot;Austria_PopulationObserved&quot;        </span></span>
+<span id="cb3-23"><a href="#cb3-23" tabindex="-1"></a><span class="co">#&gt; [11] &quot;Austria_VUGesamtbestand_2012-16&quot;</span></span>
+<span id="cb3-24"><a href="#cb3-24" tabindex="-1"></a></span>
+<span id="cb3-25"><a href="#cb3-25" tabindex="-1"></a><span class="co"># Load the German annuity table DAV 2004-R</span></span>
+<span id="cb3-26"><a href="#cb3-26" tabindex="-1"></a><span class="fu">mortalityTables.load</span>(<span class="st">&quot;Germany_Annuities_DAV2004R&quot;</span>)</span>
+<span id="cb3-27"><a href="#cb3-27" tabindex="-1"></a></span>
+<span id="cb3-28"><a href="#cb3-28" tabindex="-1"></a><span class="co"># Load all Austrian annuity data sets</span></span>
+<span id="cb3-29"><a href="#cb3-29" tabindex="-1"></a><span class="fu">mortalityTables.load</span>(<span class="st">&quot;Austria_Annuities*&quot;</span>)</span>
+<span id="cb3-30"><a href="#cb3-30" tabindex="-1"></a><span class="fu">mortalityTables.load</span>(<span class="st">&quot;Austria_Census&quot;</span>)</span></code></pre></div>
+<p>In the next few sections we will always use some of the provided life
+tables for demonstration purposes.</p>
 </div>
-<div id="working-with-life-table-objects" class="section level1">
-<h1><span class="header-section-number">4</span> Working with life table objects</h1>
-<div id="plotting-life-tables" class="section level2">
-<h2><span class="header-section-number">4.1</span> Plotting life tables</h2>
+<div id="working-with-life-table-objects" class="section level1" number="4">
+<h1><span class="header-section-number">4</span> Working with life table
+objects</h1>
+<div id="plotting-life-tables" class="section level2" number="4.1">
+<h2><span class="header-section-number">4.1</span> Plotting life
+tables</h2>
 <p>The package provides several functions to plot lifetables:</p>
 <ul>
 <li><dl>
 <dt><code>plotMortalityTables(table1, table2, ...)</code></dt>
-<dd>A log-linear plot comparing all given life tables.
+<dd>
+A log-linear plot comparing all given life tables.
 </dd>
 </dl></li>
 <li><dl>
 <dt><code>plotMortalityTableComparisons(table1, table2, ..., reference=reftable)</code></dt>
-<dd>Plot the given life tables as percentages relative to the reference table
+<dd>
+Plot the given life tables as percentages relative to the reference
+table
 </dd>
 </dl></li>
 <li><dl>
 <dt><code>plotMortalityTrend(table1, table2, ..., YOB, Period)</code></dt>
-<dd>Plot the yearly mortality improvement factors (for either the given observation year <code>Period</code> or the birth-year <code>YOB</code>)
+<dd>
+Plot the yearly mortality improvement factors (for either the given
+observation year <code>Period</code> or the birth-year <code>YOB</code>)
 </dd>
 </dl></li>
 </ul>
-<p>These functionalities are also combined into the S3 plot function for the mortalityTable class, so you can usually just call plot on the mortality tables. If the <code>trend = TRUE</code> argument is given, <code>plotMortalityTrend</code> is used, if the <code>reference</code> argument is given, <code>plotMortalityTableComparisons</code> is used, otherwise <code>plotMortalityTables</code> is called.</p>
-<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1"></a><span class="co"># Log-linear plot comparing some Austrian census tables</span></span>
-<span id="cb4-2"><a href="#cb4-2"></a><span class="kw">plot</span>(mort.AT.census.<span class="fl">1951.</span>male, mort.AT.census.<span class="fl">1991.</span>male, </span>
-<span id="cb4-3"><a href="#cb4-3"></a>     mort.AT.census.<span class="fl">2001.</span>male, mort.AT.census.<span class="fl">2011.</span>male, </span>
-<span id="cb4-4"><a href="#cb4-4"></a>     <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="dv">1</span>,<span class="dv">0</span>))</span></code></pre></div>
+<p>These functionalities are also combined into the S3 plot function for
+the mortalityTable class, so you can usually just call plot on the
+mortality tables. If the <code>trend = TRUE</code> argument is given,
+<code>plotMortalityTrend</code> is used, if the <code>reference</code>
+argument is given, <code>plotMortalityTableComparisons</code> is used,
+otherwise <code>plotMortalityTables</code> is called.</p>
+<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="co"># Log-linear plot comparing some Austrian census tables</span></span>
+<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a><span class="fu">plot</span>(mort.AT.census.<span class="fl">1951.</span>male, mort.AT.census.<span class="fl">1991.</span>male, </span>
+<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a>     mort.AT.census.<span class="fl">2001.</span>male, mort.AT.census.<span class="fl">2011.</span>male, </span>
+<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a>     <span class="at">legend.position =</span> <span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">0</span>))</span></code></pre></div>
 <p><img src="" /><!-- --></p>
-<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1"></a></span>
-<span id="cb5-2"><a href="#cb5-2"></a><span class="co"># Relative death probabilities in percentage of the latest census</span></span>
-<span id="cb5-3"><a href="#cb5-3"></a><span class="kw">plot</span>(mort.AT.census.<span class="fl">1951.</span>male, mort.AT.census.<span class="fl">1991.</span>male, </span>
-<span id="cb5-4"><a href="#cb5-4"></a>     mort.AT.census.<span class="fl">2001.</span>male, </span>
-<span id="cb5-5"><a href="#cb5-5"></a>     <span class="dt">reference =</span> mort.AT.census.<span class="fl">2011.</span>male, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="dv">1</span>,<span class="fl">0.75</span>), <span class="dt">ylim =</span> <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">4</span>))</span>
-<span id="cb5-6"><a href="#cb5-6"></a><span class="co">#&gt; Warning in normalize_deathProbabilities(if (is.data.frame(t@data$dim)</span></span>
-<span id="cb5-7"><a href="#cb5-7"></a><span class="co">#&gt; || : Reference mortality table does not contain ages</span></span>
-<span id="cb5-8"><a href="#cb5-8"></a><span class="co">#&gt; 101102103104105106107108109110111112 required for normalization. These ages will</span></span>
-<span id="cb5-9"><a href="#cb5-9"></a><span class="co">#&gt; not be normalized!</span></span></code></pre></div>
-<p><img src="" /><!-- --></p>
-<p>For cohort life tables, the plot functions also take either the <code>YOB</code> or the <code>Period</code> parameter to plot either the cohort death probabilities for the given birth year or the period death probabilities for the given observation year.</p>
-<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1"></a><span class="co"># Comparison of two Austrian annuity tables for birth year 1977</span></span>
-<span id="cb6-2"><a href="#cb6-2"></a><span class="kw">plot</span>(AVOe1996R.male, AVOe2005R.male, <span class="dt">YOB =</span> <span class="dv">1977</span>, <span class="dt">title =</span> <span class="st">&quot;Comparison for YOB=1977&quot;</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a></span>
+<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a><span class="co"># Relative death probabilities in percentage of the latest census</span></span>
+<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a><span class="fu">plot</span>(mort.AT.census.<span class="fl">1951.</span>male, mort.AT.census.<span class="fl">1991.</span>male, </span>
+<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a>     mort.AT.census.<span class="fl">2001.</span>male, </span>
+<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a>     <span class="at">reference =</span> mort.AT.census.<span class="fl">2011.</span>male, <span class="at">legend.position =</span> <span class="fu">c</span>(<span class="dv">1</span>,<span class="fl">0.75</span>), <span class="at">ylim =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">4</span>))</span>
+<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a><span class="co">#&gt; Warning in normalize_deathProbabilities(if (is.data.frame(t@data$dim) || :</span></span>
+<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a><span class="co">#&gt; Reference mortality table does not contain ages</span></span>
+<span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a><span class="co">#&gt; 101102103104105106107108109110111112 required for normalization. These ages</span></span>
+<span id="cb5-9"><a href="#cb5-9" tabindex="-1"></a><span class="co">#&gt; will not be normalized!</span></span></code></pre></div>
+<p><img src="" /><!-- --></p>
+<p>For cohort life tables, the plot functions also take either the
+<code>YOB</code> or the <code>Period</code> parameter to plot either the
+cohort death probabilities for the given birth year or the period death
+probabilities for the given observation year.</p>
+<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a><span class="co"># Comparison of two Austrian annuity tables for birth year 1977</span></span>
+<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a><span class="fu">plot</span>(AVOe1996R.male, AVOe2005R.male, <span class="at">YOB =</span> <span class="dv">1977</span>, <span class="at">title =</span> <span class="st">&quot;Comparison for YOB=1977&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
-<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1"></a></span>
-<span id="cb7-2"><a href="#cb7-2"></a><span class="co"># Comparison of two Austrian annuity tables for observation year 2020</span></span>
-<span id="cb7-3"><a href="#cb7-3"></a><span class="kw">plot</span>(AVOe1996R.male, AVOe2005R.male, <span class="dt">Period =</span> <span class="dv">2020</span>, <span class="dt">title =</span> <span class="st">&quot;Comparison for observation year 2020&quot;</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a></span>
+<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a><span class="co"># Comparison of two Austrian annuity tables for observation year 2020</span></span>
+<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a><span class="fu">plot</span>(AVOe1996R.male, AVOe2005R.male, <span class="at">Period =</span> <span class="dv">2020</span>, <span class="at">title =</span> <span class="st">&quot;Comparison for observation year 2020&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 </div>
-<div id="obtaining-period-and-cohort-death-probabilities" class="section level2">
-<h2><span class="header-section-number">4.2</span> Obtaining period and cohort death probabilities</h2>
-<p>To obtain death probabilities from all the different types of tables, there are two functions:</p>
+<div id="obtaining-period-and-cohort-death-probabilities" class="section level2" number="4.2">
+<h2><span class="header-section-number">4.2</span> Obtaining period and
+cohort death probabilities</h2>
+<p>To obtain death probabilities from all the different types of tables,
+there are two functions:</p>
 <ul>
-<li><code>deathProbabilities</code>: Returns the (cohort) death probabilities of the life table given the birth year</li>
-<li><code>periodDeathProbabilities</code>: Returns the (period) death probabilities of the life table for a given observation year</li>
+<li><code>deathProbabilities</code>: Returns the (cohort) death
+probabilities of the life table given the birth year</li>
+<li><code>periodDeathProbabilities</code>: Returns the (period) death
+probabilities of the life table for a given observation year</li>
 </ul>
-<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1"></a><span class="kw">mortalityTables.load</span>(<span class="st">&quot;Austria_Annuities&quot;</span>)</span>
-<span id="cb8-2"><a href="#cb8-2"></a><span class="co"># Get the cohort death probabilities for Austrian Annuitants born in 1977:</span></span>
-<span id="cb8-3"><a href="#cb8-3"></a>qx.coh1977 =<span class="st"> </span><span class="kw">deathProbabilities</span>(AVOe2005R.male, <span class="dt">YOB =</span> <span class="dv">1977</span>)</span>
-<span id="cb8-4"><a href="#cb8-4"></a></span>
-<span id="cb8-5"><a href="#cb8-5"></a><span class="co"># Get the period death probabilities for Austrian Annuitants observed in the year 2020:</span></span>
-<span id="cb8-6"><a href="#cb8-6"></a>qx.per2020 =<span class="st"> </span><span class="kw">periodDeathProbabilities</span>(AVOe2005R.male, <span class="dt">Period =</span> <span class="dv">2020</span>)</span></code></pre></div>
-<p>These functions return the death probabilities as a simple, numeric R vector.</p>
-<p>There are two similar functions that return the death probabilities as a period life table object that can be used with all other functions provided by this package:</p>
+<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="fu">mortalityTables.load</span>(<span class="st">&quot;Austria_Annuities&quot;</span>)</span>
+<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a><span class="co"># Get the cohort death probabilities for Austrian Annuitants born in 1977:</span></span>
+<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a>qx.coh1977 <span class="ot">=</span> <span class="fu">deathProbabilities</span>(AVOe2005R.male, <span class="at">YOB =</span> <span class="dv">1977</span>)</span>
+<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a></span>
+<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a><span class="co"># Get the period death probabilities for Austrian Annuitants observed in the year 2020:</span></span>
+<span id="cb8-6"><a href="#cb8-6" tabindex="-1"></a>qx.per2020 <span class="ot">=</span> <span class="fu">periodDeathProbabilities</span>(AVOe2005R.male, <span class="at">Period =</span> <span class="dv">2020</span>)</span></code></pre></div>
+<p>These functions return the death probabilities as a simple, numeric R
+vector.</p>
+<p>There are two similar functions that return the death probabilities
+as a period life table object that can be used with all other functions
+provided by this package:</p>
 <ul>
-<li><code>getCohortTable</code>: Get a <code>mortalityTable</code> object describing the death probabilities for people born in the given year</li>
-<li><code>getPeriodTable</code>: Get a <code>mortalityTable</code> object describing the death probabilities observed in the given year</li>
+<li><code>getCohortTable</code>: Get a <code>mortalityTable</code>
+object describing the death probabilities for people born in the given
+year</li>
+<li><code>getPeriodTable</code>: Get a <code>mortalityTable</code>
+object describing the death probabilities observed in the given
+year</li>
 </ul>
-<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1"></a><span class="co"># Get the cohort death probabilities for Austrian Annuitants born in 1977 as a mortalityTable.period object:</span></span>
-<span id="cb9-2"><a href="#cb9-2"></a>table.coh1977 =<span class="st"> </span><span class="kw">getCohortTable</span>(AVOe2005R.male, <span class="dt">YOB =</span> <span class="dv">1977</span>)</span>
-<span id="cb9-3"><a href="#cb9-3"></a></span>
-<span id="cb9-4"><a href="#cb9-4"></a><span class="co"># Get the period death probabilities for Austrian Annuitants observed in the year 2020:</span></span>
-<span id="cb9-5"><a href="#cb9-5"></a>table.per2020 =<span class="st"> </span><span class="kw">getPeriodTable</span>(AVOe2005R.male, <span class="dt">Period =</span> <span class="dv">2020</span>)</span>
-<span id="cb9-6"><a href="#cb9-6"></a></span>
-<span id="cb9-7"><a href="#cb9-7"></a><span class="co"># Compare those two in a plot:</span></span>
-<span id="cb9-8"><a href="#cb9-8"></a><span class="kw">plot</span>(table.coh1977, table.per2020, <span class="dt">title =</span> <span class="st">&quot;Comparison of cohort 1977 with Period 2020&quot;</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="dv">1</span>,<span class="dv">0</span>))</span></code></pre></div>
+<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a><span class="co"># Get the cohort death probabilities for Austrian Annuitants born in 1977 as a mortalityTable.period object:</span></span>
+<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a>table.coh1977 <span class="ot">=</span> <span class="fu">getCohortTable</span>(AVOe2005R.male, <span class="at">YOB =</span> <span class="dv">1977</span>)</span>
+<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a></span>
+<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a><span class="co"># Get the period death probabilities for Austrian Annuitants observed in the year 2020:</span></span>
+<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a>table.per2020 <span class="ot">=</span> <span class="fu">getPeriodTable</span>(AVOe2005R.male, <span class="at">Period =</span> <span class="dv">2020</span>)</span>
+<span id="cb9-6"><a href="#cb9-6" tabindex="-1"></a></span>
+<span id="cb9-7"><a href="#cb9-7" tabindex="-1"></a><span class="co"># Compare those two in a plot:</span></span>
+<span id="cb9-8"><a href="#cb9-8" tabindex="-1"></a><span class="fu">plot</span>(table.coh1977, table.per2020, <span class="at">title =</span> <span class="st">&quot;Comparison of cohort 1977 with Period 2020&quot;</span>, <span class="at">legend.position =</span> <span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">0</span>))</span></code></pre></div>
 <p><img src="" /><!-- --></p>
-<p>Not surprisingly, at 43 years the two death probabilities cross, because in 2020 the person born 1977 is 43 years old, so the <span class="math inline">\(q_x\)</span> refer to the same person. However, for younger ages, the period 2020 probabilities are lower, because the mortality improvement for those younger ages has much less time in the cohort 1977 table. For ages above 43 the cohort table describes the mortality further into the future than 2020, so there is more improvement and thus lower death probabilities for the cohort life table.</p>
+<p>Not surprisingly, at 43 years the two death probabilities cross,
+because in 2020 the person born 1977 is 43 years old, so the <span class="math inline">\(q_x\)</span> refer to the same person. However,
+for younger ages, the period 2020 probabilities are lower, because the
+mortality improvement for those younger ages has much less time in the
+cohort 1977 table. For ages above 43 the cohort table describes the
+mortality further into the future than 2020, so there is more
+improvement and thus lower death probabilities for the cohort life
+table.</p>
 </div>
-<div id="other-data-extraction-functions-from-life-tables" class="section level2">
-<h2><span class="header-section-number">4.3</span> Other data extraction functions from life tables</h2>
+<div id="other-data-extraction-functions-from-life-tables" class="section level2" number="4.3">
+<h2><span class="header-section-number">4.3</span> Other data extraction
+functions from life tables</h2>
 <table>
 <colgroup>
-<col width="30%"></col>
-<col width="69%"></col>
+<col width="30%" />
+<col width="69%" />
 </colgroup>
 <thead>
 <tr class="header">
@@ -552,11 +664,13 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 <tbody>
 <tr class="odd">
 <td align="left"><code>ages(table)</code></td>
-<td align="left">Returns the vector of ages, for which the life table can provide death probabilities</td>
+<td align="left">Returns the vector of ages, for which the life table
+can provide death probabilities</td>
 </tr>
 <tr class="even">
 <td align="left"><code>getOmega(table)</code></td>
-<td align="left">Returns the maximum age, for which the life table can provide dath probabilities</td>
+<td align="left">Returns the maximum age, for which the life table can
+provide dath probabilities</td>
 </tr>
 <tr class="odd">
 <td align="left"><code>ageShift(table, YOB)</code></td>
@@ -564,7 +678,8 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 </tr>
 <tr class="even">
 <td align="left"><code>baseTable(table)</code></td>
-<td align="left">Returns the base table, from which the table projects (for cohort tables)</td>
+<td align="left">Returns the base table, from which the table projects
+(for cohort tables)</td>
 </tr>
 <tr class="odd">
 <td align="left"><code>baseYear(table)</code></td>
@@ -572,43 +687,55 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 </tr>
 <tr class="even">
 <td align="left"><code>lifetable(table, YOB)</code></td>
-<td align="left">Returns the cohort death probabilities as a <code>lifetable</code> object for use with the lifecontingencies package</td>
+<td align="left">Returns the cohort death probabilities as a
+<code>lifetable</code> object for use with the lifecontingencies
+package</td>
 </tr>
 </tbody>
 </table>
 </div>
-<div id="dimensional-information" class="section level2">
-<h2><span class="header-section-number">4.4</span> Dimensional information</h2>
-<p>Mortality tables are always created for special purposes, particular collectives, types of risk, sex, year, etc. So, each <code>MortalityTable</code> object provides for a list of such factors that describe the underlying target of the mortality table and that can be used e.g. when plotting mortality Tables (just like any other factor variable in a ggplot):</p>
-<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1"></a><span class="kw">plotMortalityTables</span>(</span>
-<span id="cb10-2"><a href="#cb10-2"></a>  mort.AT.census[<span class="kw">c</span>(<span class="st">&quot;m&quot;</span>, <span class="st">&quot;w&quot;</span>), <span class="kw">c</span>(<span class="st">&quot;1951&quot;</span>, <span class="st">&quot;1991&quot;</span>, <span class="st">&quot;2001&quot;</span>, <span class="st">&quot;2011&quot;</span>)]) <span class="op">+</span><span class="st"> </span></span>
-<span id="cb10-3"><a href="#cb10-3"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">color =</span> <span class="kw">as.factor</span>(year), <span class="dt">linetype =</span> sex) <span class="op">+</span><span class="st"> </span><span class="kw">labs</span>(<span class="dt">color =</span> <span class="st">&quot;Period&quot;</span>, <span class="dt">linetype =</span> <span class="st">&quot;Sex&quot;</span>)</span></code></pre></div>
-<p><img src="" /><!-- --></p>
-<p>The dimensional information is stored inside the <code>@data$dim</code> field of the MortalityTable:</p>
-<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1"></a>mort.AT.census.<span class="fl">2011.</span>male<span class="op">@</span>data<span class="op">$</span>dim</span>
-<span id="cb11-2"><a href="#cb11-2"></a><span class="co">#&gt; $sex</span></span>
-<span id="cb11-3"><a href="#cb11-3"></a><span class="co">#&gt; [1] &quot;m&quot;</span></span>
-<span id="cb11-4"><a href="#cb11-4"></a><span class="co">#&gt; </span></span>
-<span id="cb11-5"><a href="#cb11-5"></a><span class="co">#&gt; $collar</span></span>
-<span id="cb11-6"><a href="#cb11-6"></a><span class="co">#&gt; [1] &quot;Gesamtbevölkerung&quot;</span></span>
-<span id="cb11-7"><a href="#cb11-7"></a><span class="co">#&gt; </span></span>
-<span id="cb11-8"><a href="#cb11-8"></a><span class="co">#&gt; $type</span></span>
-<span id="cb11-9"><a href="#cb11-9"></a><span class="co">#&gt; [1] &quot;Volkssterbetafel Österreich&quot;</span></span>
-<span id="cb11-10"><a href="#cb11-10"></a><span class="co">#&gt; </span></span>
-<span id="cb11-11"><a href="#cb11-11"></a><span class="co">#&gt; $data</span></span>
-<span id="cb11-12"><a href="#cb11-12"></a><span class="co">#&gt; [1] &quot;official&quot;</span></span>
-<span id="cb11-13"><a href="#cb11-13"></a><span class="co">#&gt; </span></span>
-<span id="cb11-14"><a href="#cb11-14"></a><span class="co">#&gt; $year</span></span>
-<span id="cb11-15"><a href="#cb11-15"></a><span class="co">#&gt; [1] 2011</span></span>
-<span id="cb11-16"><a href="#cb11-16"></a><span class="co">#&gt; </span></span>
-<span id="cb11-17"><a href="#cb11-17"></a><span class="co">#&gt; $table</span></span>
-<span id="cb11-18"><a href="#cb11-18"></a><span class="co">#&gt; [1] &quot;ÖVSt 2010/12&quot;</span></span></code></pre></div>
-<p>There are no hard and enforced rules for these names and the potential values of the dimensional information. There are, however, some conventions that are obeyed by most of the tables provided by this package:</p>
+<div id="dimensional-information" class="section level2" number="4.4">
+<h2><span class="header-section-number">4.4</span> Dimensional
+information</h2>
+<p>Mortality tables are always created for special purposes, particular
+collectives, types of risk, sex, year, etc. So, each
+<code>MortalityTable</code> object provides for a list of such factors
+that describe the underlying target of the mortality table and that can
+be used e.g. when plotting mortality Tables (just like any other factor
+variable in a ggplot):</p>
+<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a><span class="fu">plotMortalityTables</span>(</span>
+<span id="cb10-2"><a href="#cb10-2" tabindex="-1"></a>  mort.AT.census[<span class="fu">c</span>(<span class="st">&quot;m&quot;</span>, <span class="st">&quot;w&quot;</span>), <span class="fu">c</span>(<span class="st">&quot;1951&quot;</span>, <span class="st">&quot;1991&quot;</span>, <span class="st">&quot;2001&quot;</span>, <span class="st">&quot;2011&quot;</span>)]) <span class="sc">+</span> </span>
+<span id="cb10-3"><a href="#cb10-3" tabindex="-1"></a>  <span class="fu">aes</span>(<span class="at">color =</span> <span class="fu">as.factor</span>(year), <span class="at">linetype =</span> sex) <span class="sc">+</span> <span class="fu">labs</span>(<span class="at">color =</span> <span class="st">&quot;Period&quot;</span>, <span class="at">linetype =</span> <span class="st">&quot;Sex&quot;</span>)</span></code></pre></div>
+<p><img src="" /><!-- --></p>
+<p>The dimensional information is stored inside the
+<code>@data$dim</code> field of the MortalityTable:</p>
+<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a>mort.AT.census.<span class="fl">2011.</span>male<span class="sc">@</span>data<span class="sc">$</span>dim</span>
+<span id="cb11-2"><a href="#cb11-2" tabindex="-1"></a><span class="co">#&gt; $sex</span></span>
+<span id="cb11-3"><a href="#cb11-3" tabindex="-1"></a><span class="co">#&gt; [1] &quot;m&quot;</span></span>
+<span id="cb11-4"><a href="#cb11-4" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb11-5"><a href="#cb11-5" tabindex="-1"></a><span class="co">#&gt; $collar</span></span>
+<span id="cb11-6"><a href="#cb11-6" tabindex="-1"></a><span class="co">#&gt; [1] &quot;Gesamtbevölkerung&quot;</span></span>
+<span id="cb11-7"><a href="#cb11-7" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb11-8"><a href="#cb11-8" tabindex="-1"></a><span class="co">#&gt; $type</span></span>
+<span id="cb11-9"><a href="#cb11-9" tabindex="-1"></a><span class="co">#&gt; [1] &quot;Volkssterbetafel Österreich&quot;</span></span>
+<span id="cb11-10"><a href="#cb11-10" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb11-11"><a href="#cb11-11" tabindex="-1"></a><span class="co">#&gt; $data</span></span>
+<span id="cb11-12"><a href="#cb11-12" tabindex="-1"></a><span class="co">#&gt; [1] &quot;official&quot;</span></span>
+<span id="cb11-13"><a href="#cb11-13" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb11-14"><a href="#cb11-14" tabindex="-1"></a><span class="co">#&gt; $year</span></span>
+<span id="cb11-15"><a href="#cb11-15" tabindex="-1"></a><span class="co">#&gt; [1] 2011</span></span>
+<span id="cb11-16"><a href="#cb11-16" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb11-17"><a href="#cb11-17" tabindex="-1"></a><span class="co">#&gt; $table</span></span>
+<span id="cb11-18"><a href="#cb11-18" tabindex="-1"></a><span class="co">#&gt; [1] &quot;ÖVSt 2010/12&quot;</span></span></code></pre></div>
+<p>There are no hard and enforced rules for these names and the
+potential values of the dimensional information. There are, however,
+some conventions that are obeyed by most of the tables provided by this
+package:</p>
 <table>
 <colgroup>
-<col width="18%"></col>
-<col width="47%"></col>
-<col width="34%"></col>
+<col width="18%" />
+<col width="47%" />
+<col width="34%" />
 </colgroup>
 <thead>
 <tr class="header">
@@ -625,43 +752,57 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 </tr>
 <tr class="even">
 <td align="left"><code>collar</code></td>
-<td align="left">“Rententafel”, “Gruppenrententafel”, “Einzel”, “Gruppe”, “Gesamtbevölkerung”, “Raucher”, “Nichtraucher”, “Arbeiter”, “Angestellte”, “Mischtafel”</td>
+<td align="left">“Rententafel”, “Gruppenrententafel”, “Einzel”,
+“Gruppe”, “Gesamtbevölkerung”, “Raucher”, “Nichtraucher”, “Arbeiter”,
+“Angestellte”, “Mischtafel”</td>
 <td align="left">Collective, to which the mortality table applies</td>
 </tr>
 <tr class="odd">
 <td align="left"><code>type</code></td>
-<td align="left">“Rententafel”, “Volkssterbetafel”, “Pensionstafel”, “Bevölkerungsprognose”, “Beobachtung”, “Risikotafel”</td>
+<td align="left">“Rententafel”, “Volkssterbetafel”, “Pensionstafel”,
+“Bevölkerungsprognose”, “Beobachtung”, “Risikotafel”</td>
 <td align="left">The type of table</td>
 </tr>
 <tr class="even">
 <td align="left"><code>data</code></td>
-<td align="left">“official”, “raw”, “loaded”, “loaded, group”, “unloaded”, “age-shifted”, “geglättet”</td>
+<td align="left">“official”, “raw”, “loaded”, “loaded, group”,
+“unloaded”, “age-shifted”, “geglättet”</td>
 <td align="left">The type of data</td>
 </tr>
 <tr class="odd">
 <td align="left"><code>year</code></td>
-<td align="left">numeric year, “2014-2080”, “1980-2017”, “1947-2017”</td>
+<td align="left">numeric year, “2014-2080”, “1980-2017”,
+“1947-2017”</td>
 <td align="left">The year (or range) described by the table</td>
 </tr>
 <tr class="even">
 <td align="left"><code>tablename</code></td>
-<td align="left">“AVÖ 1996-R”, “AVÖ 2005-R”, “EROM 85”, “EROF 85”, “EROM G1950”, “EROF G1950”, “EROM G1950 AV”, “EROF G1950 AV”, “RR67”, “DAV 1994R”, “DAV 2004R”, “DAV 1994T”, “DAV 2008T”, “1971 IAM”, “1971 IAM projected”, “1983a”, “1983 GAM”, “1994 GAM”, “1994 GAR”, “2012 IAM”, “Annuity 2000”, “AVÖ 1999-P”, “AVÖ 2008-P”, “Ettl-Pagler 1989”, “DAV 2005-G”</td>
+<td align="left">“AVÖ 1996-R”, “AVÖ 2005-R”, “EROM 85”, “EROF 85”, “EROM
+G1950”, “EROF G1950”, “EROM G1950 AV”, “EROF G1950 AV”, “RR67”, “DAV
+1994R”, “DAV 2004R”, “DAV 1994T”, “DAV 2008T”, “1971 IAM”, “1971 IAM
+projected”, “1983a”, “1983 GAM”, “1994 GAM”, “1994 GAR”, “2012 IAM”,
+“Annuity 2000”, “AVÖ 1999-P”, “AVÖ 2008-P”, “Ettl-Pagler 1989”, “DAV
+2005-G”</td>
 <td align="left">The formal name of the table</td>
 </tr>
 <tr class="odd">
 <td align="left"><code>risk</code></td>
-<td align="left">“Tod”, “sonst. Ausscheiden”, “Invalidisierung”, “Partnerwahrscheinlichkeit im Tod”, “mittl. Hinterbliebenenalter”</td>
+<td align="left">“Tod”, “sonst. Ausscheiden”, “Invalidisierung”,
+“Partnerwahrscheinlichkeit im Tod”, “mittl. Hinterbliebenenalter”</td>
 <td align="left">The type of risk described by the table</td>
 </tr>
 <tr class="even">
 <td align="left"><code>probability</code></td>
-<td align="left">“qx”, “sx”, “ix”, “qgx”, “qix”, “qpx”, “hx”, “qwy”, “yx”</td>
-<td align="left">The probability described by the table (corresponds with “risk”)</td>
+<td align="left">“qx”, “sx”, “ix”, “qgx”, “qix”, “qpx”, “hx”, “qwy”,
+“yx”</td>
+<td align="left">The probability described by the table (corresponds
+with “risk”)</td>
 </tr>
 <tr class="odd">
 <td align="left"><code>country</code></td>
 <td align="left">“Österreich”, “Deutschland”, “USA”, …</td>
-<td align="left">The geographic region of the table (not neccessarily only countries)</td>
+<td align="left">The geographic region of the table (not neccessarily
+only countries)</td>
 </tr>
 <tr class="even">
 <td align="left"><code>source</code></td>
@@ -670,404 +811,586 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 </tr>
 </tbody>
 </table>
-<p>Some of the provided datasets (mortality tables) have not yet fully implemented these conventions, so pleasy be vary when using them.</p>
+<p>Some of the provided datasets (mortality tables) have not yet fully
+implemented these conventions, so pleasy be vary when using them.</p>
 </div>
 </div>
-<div id="creating-a-life-table-object" class="section level1">
-<h1><span class="header-section-number">5</span> Creating a life table object</h1>
-<div id="period-life-tables" class="section level2">
-<h2><span class="header-section-number">5.1</span> Period life tables</h2>
-<p>Period death probabilities are the simplest type of life table, giving the probabilities of death observed during the corresponding year (the “period”). The death probabilities of different ages refer to different persons, being of the corresponding ages in the observation year. All that is needed to create a period life table are the death probabilities and the corresponding ages:</p>
-<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1"></a>lt =<span class="st"> </span><span class="kw">mortalityTable.period</span>(<span class="dt">name =</span> <span class="st">&quot;Sample period lifetable&quot;</span>, <span class="dt">ages =</span> <span class="dv">1</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">deathProbs =</span> <span class="kw">exp</span>(<span class="op">-</span>(<span class="dv">99</span><span class="op">:</span><span class="dv">1</span>)<span class="op">/</span><span class="dv">10</span>))</span>
-<span id="cb12-2"><a href="#cb12-2"></a><span class="kw">plot</span>(lt, <span class="dt">title =</span> <span class="st">&quot;Simple log-linear period mortality table&quot;</span>)</span></code></pre></div>
+<div id="creating-a-life-table-object" class="section level1" number="5">
+<h1><span class="header-section-number">5</span> Creating a life table
+object</h1>
+<div id="period-life-tables" class="section level2" number="5.1">
+<h2><span class="header-section-number">5.1</span> Period life
+tables</h2>
+<p>Period death probabilities are the simplest type of life table,
+giving the probabilities of death observed during the corresponding year
+(the “period”). The death probabilities of different ages refer to
+different persons, being of the corresponding ages in the observation
+year. All that is needed to create a period life table are the death
+probabilities and the corresponding ages:</p>
+<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" tabindex="-1"></a>lt <span class="ot">=</span> <span class="fu">mortalityTable.period</span>(<span class="at">name =</span> <span class="st">&quot;Sample period lifetable&quot;</span>, <span class="at">ages =</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">99</span>, <span class="at">deathProbs =</span> <span class="fu">exp</span>(<span class="sc">-</span>(<span class="dv">99</span><span class="sc">:</span><span class="dv">1</span>)<span class="sc">/</span><span class="dv">10</span>))</span>
+<span id="cb12-2"><a href="#cb12-2" tabindex="-1"></a><span class="fu">plot</span>(lt, <span class="at">title =</span> <span class="st">&quot;Simple log-linear period mortality table&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
-<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1"></a><span class="kw">deathProbabilities</span>(lt)</span>
-<span id="cb13-2"><a href="#cb13-2"></a><span class="co">#&gt;  [1] 5.017468e-05 5.545160e-05 6.128350e-05 6.772874e-05 7.485183e-05</span></span>
-<span id="cb13-3"><a href="#cb13-3"></a><span class="co">#&gt;  [6] 8.272407e-05 9.142423e-05 1.010394e-04 1.116658e-04 1.234098e-04</span></span>
-<span id="cb13-4"><a href="#cb13-4"></a><span class="co">#&gt; [11] 1.363889e-04 1.507331e-04 1.665858e-04 1.841058e-04 2.034684e-04</span></span>
-<span id="cb13-5"><a href="#cb13-5"></a><span class="co">#&gt; [16] 2.248673e-04 2.485168e-04 2.746536e-04 3.035391e-04 3.354626e-04</span></span>
-<span id="cb13-6"><a href="#cb13-6"></a><span class="co">#&gt; [21] 3.707435e-04 4.097350e-04 4.528272e-04 5.004514e-04 5.530844e-04</span></span>
-<span id="cb13-7"><a href="#cb13-7"></a><span class="co">#&gt; [26] 6.112528e-04 6.755388e-04 7.465858e-04 8.251049e-04 9.118820e-04</span></span>
-<span id="cb13-8"><a href="#cb13-8"></a><span class="co">#&gt; [31] 1.007785e-03 1.113775e-03 1.230912e-03 1.360368e-03 1.503439e-03</span></span>
-<span id="cb13-9"><a href="#cb13-9"></a><span class="co">#&gt; [36] 1.661557e-03 1.836305e-03 2.029431e-03 2.242868e-03 2.478752e-03</span></span>
-<span id="cb13-10"><a href="#cb13-10"></a><span class="co">#&gt; [41] 2.739445e-03 3.027555e-03 3.345965e-03 3.697864e-03 4.086771e-03</span></span>
-<span id="cb13-11"><a href="#cb13-11"></a><span class="co">#&gt; [46] 4.516581e-03 4.991594e-03 5.516564e-03 6.096747e-03 6.737947e-03</span></span>
-<span id="cb13-12"><a href="#cb13-12"></a><span class="co">#&gt; [51] 7.446583e-03 8.229747e-03 9.095277e-03 1.005184e-02 1.110900e-02</span></span>
-<span id="cb13-13"><a href="#cb13-13"></a><span class="co">#&gt; [56] 1.227734e-02 1.356856e-02 1.499558e-02 1.657268e-02 1.831564e-02</span></span>
-<span id="cb13-14"><a href="#cb13-14"></a><span class="co">#&gt; [61] 2.024191e-02 2.237077e-02 2.472353e-02 2.732372e-02 3.019738e-02</span></span>
-<span id="cb13-15"><a href="#cb13-15"></a><span class="co">#&gt; [66] 3.337327e-02 3.688317e-02 4.076220e-02 4.504920e-02 4.978707e-02</span></span>
-<span id="cb13-16"><a href="#cb13-16"></a><span class="co">#&gt; [71] 5.502322e-02 6.081006e-02 6.720551e-02 7.427358e-02 8.208500e-02</span></span>
-<span id="cb13-17"><a href="#cb13-17"></a><span class="co">#&gt; [76] 9.071795e-02 1.002588e-01 1.108032e-01 1.224564e-01 1.353353e-01</span></span>
-<span id="cb13-18"><a href="#cb13-18"></a><span class="co">#&gt; [81] 1.495686e-01 1.652989e-01 1.826835e-01 2.018965e-01 2.231302e-01</span></span>
-<span id="cb13-19"><a href="#cb13-19"></a><span class="co">#&gt; [86] 2.465970e-01 2.725318e-01 3.011942e-01 3.328711e-01 3.678794e-01</span></span>
-<span id="cb13-20"><a href="#cb13-20"></a><span class="co">#&gt; [91] 4.065697e-01 4.493290e-01 4.965853e-01 5.488116e-01 6.065307e-01</span></span>
-<span id="cb13-21"><a href="#cb13-21"></a><span class="co">#&gt; [96] 6.703200e-01 7.408182e-01 8.187308e-01 9.048374e-01</span></span></code></pre></div>
+<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" tabindex="-1"></a><span class="fu">deathProbabilities</span>(lt)</span>
+<span id="cb13-2"><a href="#cb13-2" tabindex="-1"></a><span class="co">#&gt;  [1] 5.017468e-05 5.545160e-05 6.128350e-05 6.772874e-05 7.485183e-05</span></span>
+<span id="cb13-3"><a href="#cb13-3" tabindex="-1"></a><span class="co">#&gt;  [6] 8.272407e-05 9.142423e-05 1.010394e-04 1.116658e-04 1.234098e-04</span></span>
+<span id="cb13-4"><a href="#cb13-4" tabindex="-1"></a><span class="co">#&gt; [11] 1.363889e-04 1.507331e-04 1.665858e-04 1.841058e-04 2.034684e-04</span></span>
+<span id="cb13-5"><a href="#cb13-5" tabindex="-1"></a><span class="co">#&gt; [16] 2.248673e-04 2.485168e-04 2.746536e-04 3.035391e-04 3.354626e-04</span></span>
+<span id="cb13-6"><a href="#cb13-6" tabindex="-1"></a><span class="co">#&gt; [21] 3.707435e-04 4.097350e-04 4.528272e-04 5.004514e-04 5.530844e-04</span></span>
+<span id="cb13-7"><a href="#cb13-7" tabindex="-1"></a><span class="co">#&gt; [26] 6.112528e-04 6.755388e-04 7.465858e-04 8.251049e-04 9.118820e-04</span></span>
+<span id="cb13-8"><a href="#cb13-8" tabindex="-1"></a><span class="co">#&gt; [31] 1.007785e-03 1.113775e-03 1.230912e-03 1.360368e-03 1.503439e-03</span></span>
+<span id="cb13-9"><a href="#cb13-9" tabindex="-1"></a><span class="co">#&gt; [36] 1.661557e-03 1.836305e-03 2.029431e-03 2.242868e-03 2.478752e-03</span></span>
+<span id="cb13-10"><a href="#cb13-10" tabindex="-1"></a><span class="co">#&gt; [41] 2.739445e-03 3.027555e-03 3.345965e-03 3.697864e-03 4.086771e-03</span></span>
+<span id="cb13-11"><a href="#cb13-11" tabindex="-1"></a><span class="co">#&gt; [46] 4.516581e-03 4.991594e-03 5.516564e-03 6.096747e-03 6.737947e-03</span></span>
+<span id="cb13-12"><a href="#cb13-12" tabindex="-1"></a><span class="co">#&gt; [51] 7.446583e-03 8.229747e-03 9.095277e-03 1.005184e-02 1.110900e-02</span></span>
+<span id="cb13-13"><a href="#cb13-13" tabindex="-1"></a><span class="co">#&gt; [56] 1.227734e-02 1.356856e-02 1.499558e-02 1.657268e-02 1.831564e-02</span></span>
+<span id="cb13-14"><a href="#cb13-14" tabindex="-1"></a><span class="co">#&gt; [61] 2.024191e-02 2.237077e-02 2.472353e-02 2.732372e-02 3.019738e-02</span></span>
+<span id="cb13-15"><a href="#cb13-15" tabindex="-1"></a><span class="co">#&gt; [66] 3.337327e-02 3.688317e-02 4.076220e-02 4.504920e-02 4.978707e-02</span></span>
+<span id="cb13-16"><a href="#cb13-16" tabindex="-1"></a><span class="co">#&gt; [71] 5.502322e-02 6.081006e-02 6.720551e-02 7.427358e-02 8.208500e-02</span></span>
+<span id="cb13-17"><a href="#cb13-17" tabindex="-1"></a><span class="co">#&gt; [76] 9.071795e-02 1.002588e-01 1.108032e-01 1.224564e-01 1.353353e-01</span></span>
+<span id="cb13-18"><a href="#cb13-18" tabindex="-1"></a><span class="co">#&gt; [81] 1.495686e-01 1.652989e-01 1.826835e-01 2.018965e-01 2.231302e-01</span></span>
+<span id="cb13-19"><a href="#cb13-19" tabindex="-1"></a><span class="co">#&gt; [86] 2.465970e-01 2.725318e-01 3.011942e-01 3.328711e-01 3.678794e-01</span></span>
+<span id="cb13-20"><a href="#cb13-20" tabindex="-1"></a><span class="co">#&gt; [91] 4.065697e-01 4.493290e-01 4.965853e-01 5.488116e-01 6.065307e-01</span></span>
+<span id="cb13-21"><a href="#cb13-21" tabindex="-1"></a><span class="co">#&gt; [96] 6.703200e-01 7.408182e-01 8.187308e-01 9.048374e-01</span></span></code></pre></div>
 <!-- ### Observed life tables -->
 <!-- The observations for the given years -->
 <!-- TODO -->
 </div>
-<div id="cohort-life-tables-with-trend-projection" class="section level2">
-<h2><span class="header-section-number">5.2</span> Cohort life tables with trend projection</h2>
-<p>A cohort life table with trend projection needs the following parameters:</p>
+<div id="cohort-life-tables-with-trend-projection" class="section level2" number="5.2">
+<h2><span class="header-section-number">5.2</span> Cohort life tables
+with trend projection</h2>
+<p>A cohort life table with trend projection needs the following
+parameters:</p>
 <ul>
-<li>The base table <span class="math inline">\(q_x^{(base)}\)</span> (death probabilities) for the given base period as a vector</li>
+<li>The base table <span class="math inline">\(q_x^{(base)}\)</span>
+(death probabilities) for the given base period as a vector</li>
 <li>Age-specific trend factors <span class="math inline">\(\lambda_x\)</span> as a vector</li>
 <li>The base year (numeric)</li>
 <li></li>
 </ul>
-<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1"></a>atPlus2 =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>(</span>
-<span id="cb14-2"><a href="#cb14-2"></a>    <span class="dt">name =</span> <span class="st">&quot;Austrian Census Males 2011, 2% yearly trend&quot;</span>,</span>
-<span id="cb14-3"><a href="#cb14-3"></a>    <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span>
-<span id="cb14-4"><a href="#cb14-4"></a>    <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
-<span id="cb14-5"><a href="#cb14-5"></a>    <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
-<span id="cb14-6"><a href="#cb14-6"></a>    <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male)))</span>
-<span id="cb14-7"><a href="#cb14-7"></a>)</span></code></pre></div>
-<p>Some life tables do not assume a constant age-specific trend over time, but rather assume that the currently observed high mortality improvements are just a temporary effect, so the current trend is in effect only for some time and then reduces to some kind of long-term trend.</p>
-<p>There are two conceptual approaches: One is to use a trend dampening function that is simply applied to the starting trend. So, while the initial trend might be 3%, i.e. the projection will use <code>(ObservationYear-BaseYear) * OriginalYear</code>, over time it will assume the value <code>dampeningFunction(ObservationYear-BaseYear) * OriginalTrend</code>. The dampening function in this case gives the cumulated trend effect from the base year until the observation year. To implement this trend reduction with the MortalityTables package, simply pass a one-argument function as the <code>dampingFunction</code> slot to the class, the argument will be the number of years from the base year (NOT the calendar year!):</p>
-<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1"></a>atPlus2.damp =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>(</span>
-<span id="cb15-2"><a href="#cb15-2"></a>    <span class="dt">name =</span> <span class="st">&quot;Austrian M &#39;11, 2% yearly, damping until 2111&quot;</span>,</span>
-<span id="cb15-3"><a href="#cb15-3"></a>    <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span>
-<span id="cb15-4"><a href="#cb15-4"></a>    <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
-<span id="cb15-5"><a href="#cb15-5"></a>    <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
-<span id="cb15-6"><a href="#cb15-6"></a>    <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span>
-<span id="cb15-7"><a href="#cb15-7"></a>    <span class="co"># damping function: 2011: full effect, linear reduction until yearly trend=0 in 2111:</span></span>
-<span id="cb15-8"><a href="#cb15-8"></a>    <span class="co"># 2011: 100%, 2012: 99%, 2013: 98% =&gt; For 2013 we have a cumulative trend </span></span>
-<span id="cb15-9"><a href="#cb15-9"></a>    <span class="co"># of 297% instead of 300% for three full yearly trends!</span></span>
-<span id="cb15-10"><a href="#cb15-10"></a>    <span class="dt">dampingFunction =</span> <span class="cf">function</span>(n) { n <span class="op">-</span><span class="st"> </span>n <span class="op">*</span><span class="st"> </span>(n <span class="op">+</span><span class="st"> </span><span class="dv">1</span>) <span class="op">/</span><span class="st"> </span><span class="dv">2</span> <span class="op">/</span><span class="st"> </span><span class="dv">100</span> }</span>
-<span id="cb15-11"><a href="#cb15-11"></a>)</span>
-<span id="cb15-12"><a href="#cb15-12"></a></span>
-<span id="cb15-13"><a href="#cb15-13"></a><span class="kw">plot</span>(mort.AT.census.<span class="fl">2011.</span>male, atPlus2, atPlus2.damp, <span class="dt">YOB =</span> <span class="dv">2011</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code></pre></div>
+<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" tabindex="-1"></a>atPlus2 <span class="ot">=</span> <span class="fu">mortalityTable.trendProjection</span>(</span>
+<span id="cb14-2"><a href="#cb14-2" tabindex="-1"></a>    <span class="at">name =</span> <span class="st">&quot;Austrian Census Males 2011, 2% yearly trend&quot;</span>,</span>
+<span id="cb14-3"><a href="#cb14-3" tabindex="-1"></a>    <span class="at">baseYear =</span> <span class="dv">2011</span>,</span>
+<span id="cb14-4"><a href="#cb14-4" tabindex="-1"></a>    <span class="at">deathProbs =</span> <span class="fu">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
+<span id="cb14-5"><a href="#cb14-5" tabindex="-1"></a>    <span class="at">ages =</span> <span class="fu">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
+<span id="cb14-6"><a href="#cb14-6" tabindex="-1"></a>    <span class="at">trend =</span> <span class="fu">rep</span>(<span class="fl">0.02</span>, <span class="fu">length</span>(<span class="fu">ages</span>(mort.AT.census.<span class="fl">2011.</span>male)))</span>
+<span id="cb14-7"><a href="#cb14-7" tabindex="-1"></a>)</span></code></pre></div>
+<p>Some life tables do not assume a constant age-specific trend over
+time, but rather assume that the currently observed high mortality
+improvements are just a temporary effect, so the current trend is in
+effect only for some time and then reduces to some kind of long-term
+trend.</p>
+<p>There are two conceptual approaches: One is to use a trend dampening
+function that is simply applied to the starting trend. So, while the
+initial trend might be 3%, i.e. the projection will use
+<code>(ObservationYear-BaseYear) * OriginalYear</code>, over time it
+will assume the value
+<code>dampeningFunction(ObservationYear-BaseYear) * OriginalTrend</code>.
+The dampening function in this case gives the cumulated trend effect
+from the base year until the observation year. To implement this trend
+reduction with the MortalityTables package, simply pass a one-argument
+function as the <code>dampingFunction</code> slot to the class, the
+argument will be the number of years from the base year (NOT the
+calendar year!):</p>
+<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" tabindex="-1"></a>atPlus2.damp <span class="ot">=</span> <span class="fu">mortalityTable.trendProjection</span>(</span>
+<span id="cb15-2"><a href="#cb15-2" tabindex="-1"></a>    <span class="at">name =</span> <span class="st">&quot;Austrian M &#39;11, 2% yearly, damping until 2111&quot;</span>,</span>
+<span id="cb15-3"><a href="#cb15-3" tabindex="-1"></a>    <span class="at">baseYear =</span> <span class="dv">2011</span>,</span>
+<span id="cb15-4"><a href="#cb15-4" tabindex="-1"></a>    <span class="at">deathProbs =</span> <span class="fu">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
+<span id="cb15-5"><a href="#cb15-5" tabindex="-1"></a>    <span class="at">ages =</span> <span class="fu">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
+<span id="cb15-6"><a href="#cb15-6" tabindex="-1"></a>    <span class="at">trend =</span> <span class="fu">rep</span>(<span class="fl">0.02</span>, <span class="fu">length</span>(<span class="fu">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span>
+<span id="cb15-7"><a href="#cb15-7" tabindex="-1"></a>    <span class="co"># damping function: 2011: full effect, linear reduction until yearly trend=0 in 2111:</span></span>
+<span id="cb15-8"><a href="#cb15-8" tabindex="-1"></a>    <span class="co"># 2011: 100%, 2012: 99%, 2013: 98% =&gt; For 2013 we have a cumulative trend </span></span>
+<span id="cb15-9"><a href="#cb15-9" tabindex="-1"></a>    <span class="co"># of 297% instead of 300% for three full yearly trends!</span></span>
+<span id="cb15-10"><a href="#cb15-10" tabindex="-1"></a>    <span class="at">dampingFunction =</span> <span class="cf">function</span>(n) { n <span class="sc">-</span> n <span class="sc">*</span> (n <span class="sc">+</span> <span class="dv">1</span>) <span class="sc">/</span> <span class="dv">2</span> <span class="sc">/</span> <span class="dv">100</span> }</span>
+<span id="cb15-11"><a href="#cb15-11" tabindex="-1"></a>)</span>
+<span id="cb15-12"><a href="#cb15-12" tabindex="-1"></a></span>
+<span id="cb15-13"><a href="#cb15-13" tabindex="-1"></a><span class="fu">plot</span>(mort.AT.census.<span class="fl">2011.</span>male, atPlus2, atPlus2.damp, <span class="at">YOB =</span> <span class="dv">2011</span>, <span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code></pre></div>
 <p><img src="" /><!-- --></p>
-<p>The other approach is to assume that instead of the initial trend, after some time a second trend (slot trend2) takes over. In this case, the <code>dampingFunction</code> slot is again a one-argument function that now gives the weight of the first trend, while <code>1-dampingFunction(year)</code> will give the weight of the second trend. As the weights will be applied for the whole period from the base- to the observation year, the weights need to be cumulated and normalized.</p>
-<p>The argument in this case is the actual calendar year (not the year since the base year like it was in the one-trend case above!)</p>
-<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1"></a>atPlus2.damp2 =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>(</span>
-<span id="cb16-2"><a href="#cb16-2"></a>    <span class="dt">name =</span> <span class="st">&quot;Austrian M &#39;11, 2% yearly, 1% long-term&quot;</span>,</span>
-<span id="cb16-3"><a href="#cb16-3"></a>    <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span>
-<span id="cb16-4"><a href="#cb16-4"></a>    <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
-<span id="cb16-5"><a href="#cb16-5"></a>    <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
-<span id="cb16-6"><a href="#cb16-6"></a>    <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span>
-<span id="cb16-7"><a href="#cb16-7"></a>    <span class="dt">trend2 =</span> <span class="kw">rep</span>(<span class="fl">0.01</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span>
-<span id="cb16-8"><a href="#cb16-8"></a>    <span class="co"># damping function interpolates between the two trends: </span></span>
-<span id="cb16-9"><a href="#cb16-9"></a>    <span class="co"># until 2021 trend 1, from 2031 trend 2, linearly beteen</span></span>
-<span id="cb16-10"><a href="#cb16-10"></a>    <span class="dt">dampingFunction =</span> <span class="cf">function</span>(year) { </span>
-<span id="cb16-11"><a href="#cb16-11"></a>        <span class="cf">if</span> (year <span class="op">&lt;=</span><span class="st"> </span><span class="dv">2021</span>) <span class="dv">1</span></span>
-<span id="cb16-12"><a href="#cb16-12"></a>        <span class="cf">else</span> <span class="cf">if</span> (year <span class="op">&gt;</span><span class="st"> </span><span class="dv">2031</span>) <span class="fl">14.5</span><span class="op">/</span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2011</span>)</span>
-<span id="cb16-13"><a href="#cb16-13"></a>        <span class="cf">else</span> <span class="dv">1</span> <span class="op">-</span><span class="st"> </span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2021</span>)<span class="op">*</span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2021</span> <span class="op">+</span><span class="st"> </span><span class="dv">1</span>) <span class="op">/</span><span class="st"> </span><span class="dv">20</span> <span class="op">/</span><span class="st"> </span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2011</span>)</span>
-<span id="cb16-14"><a href="#cb16-14"></a>    }</span>
-<span id="cb16-15"><a href="#cb16-15"></a>)</span>
-<span id="cb16-16"><a href="#cb16-16"></a></span>
-<span id="cb16-17"><a href="#cb16-17"></a><span class="kw">plot</span>(mort.AT.census.<span class="fl">2011.</span>male, atPlus2, atPlus2.damp, atPlus2.damp2, <span class="dt">YOB =</span> <span class="dv">2011</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.02</span>, <span class="fl">0.98</span>), <span class="dt">legend.justification =</span> <span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">1</span>))</span></code></pre></div>
+<p>The other approach is to assume that instead of the initial trend,
+after some time a second trend (slot trend2) takes over. In this case,
+the <code>dampingFunction</code> slot is again a one-argument function
+that now gives the weight of the first trend, while
+<code>1-dampingFunction(year)</code> will give the weight of the second
+trend. As the weights will be applied for the whole period from the
+base- to the observation year, the weights need to be cumulated and
+normalized.</p>
+<p>The argument in this case is the actual calendar year (not the year
+since the base year like it was in the one-trend case above!)</p>
+<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" tabindex="-1"></a>atPlus2.damp2 <span class="ot">=</span> <span class="fu">mortalityTable.trendProjection</span>(</span>
+<span id="cb16-2"><a href="#cb16-2" tabindex="-1"></a>    <span class="at">name =</span> <span class="st">&quot;Austrian M &#39;11, 2% yearly, 1% long-term&quot;</span>,</span>
+<span id="cb16-3"><a href="#cb16-3" tabindex="-1"></a>    <span class="at">baseYear =</span> <span class="dv">2011</span>,</span>
+<span id="cb16-4"><a href="#cb16-4" tabindex="-1"></a>    <span class="at">deathProbs =</span> <span class="fu">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
+<span id="cb16-5"><a href="#cb16-5" tabindex="-1"></a>    <span class="at">ages =</span> <span class="fu">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
+<span id="cb16-6"><a href="#cb16-6" tabindex="-1"></a>    <span class="at">trend =</span> <span class="fu">rep</span>(<span class="fl">0.02</span>, <span class="fu">length</span>(<span class="fu">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span>
+<span id="cb16-7"><a href="#cb16-7" tabindex="-1"></a>    <span class="at">trend2 =</span> <span class="fu">rep</span>(<span class="fl">0.01</span>, <span class="fu">length</span>(<span class="fu">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span>
+<span id="cb16-8"><a href="#cb16-8" tabindex="-1"></a>    <span class="co"># damping function interpolates between the two trends: </span></span>
+<span id="cb16-9"><a href="#cb16-9" tabindex="-1"></a>    <span class="co"># until 2021 trend 1, from 2031 trend 2, linearly beteen</span></span>
+<span id="cb16-10"><a href="#cb16-10" tabindex="-1"></a>    <span class="at">dampingFunction =</span> <span class="cf">function</span>(year) { </span>
+<span id="cb16-11"><a href="#cb16-11" tabindex="-1"></a>        <span class="cf">if</span> (year <span class="sc">&lt;=</span> <span class="dv">2021</span>) <span class="dv">1</span></span>
+<span id="cb16-12"><a href="#cb16-12" tabindex="-1"></a>        <span class="cf">else</span> <span class="cf">if</span> (year <span class="sc">&gt;</span> <span class="dv">2031</span>) <span class="fl">14.5</span><span class="sc">/</span>(year <span class="sc">-</span> <span class="dv">2011</span>)</span>
+<span id="cb16-13"><a href="#cb16-13" tabindex="-1"></a>        <span class="cf">else</span> <span class="dv">1</span> <span class="sc">-</span> (year <span class="sc">-</span> <span class="dv">2021</span>)<span class="sc">*</span>(year <span class="sc">-</span> <span class="dv">2021</span> <span class="sc">+</span> <span class="dv">1</span>) <span class="sc">/</span> <span class="dv">20</span> <span class="sc">/</span> (year <span class="sc">-</span> <span class="dv">2011</span>)</span>
+<span id="cb16-14"><a href="#cb16-14" tabindex="-1"></a>    }</span>
+<span id="cb16-15"><a href="#cb16-15" tabindex="-1"></a>)</span>
+<span id="cb16-16"><a href="#cb16-16" tabindex="-1"></a></span>
+<span id="cb16-17"><a href="#cb16-17" tabindex="-1"></a><span class="fu">plot</span>(mort.AT.census.<span class="fl">2011.</span>male, atPlus2, atPlus2.damp, atPlus2.damp2, <span class="at">YOB =</span> <span class="dv">2011</span>, <span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.02</span>, <span class="fl">0.98</span>), <span class="at">legend.justification =</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>))</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 </div>
-<div id="cohort-life-tables-with-age-shift" class="section level2">
-<h2><span class="header-section-number">5.3</span> Cohort life tables with age-shift</h2>
-<p>Age-shifted cohort life tables are an approximation to full cohort life tables. Full cohort life tables apply a trend or improvment factors to the death probabilities of a base year to obtail death probabilities for a given birth year. Age-shifting rather modifies the age of the corresponding person and uses the same, unmodified base table for all cohorts. Basically, it works like this:</p>
+<div id="cohort-life-tables-with-age-shift" class="section level2" number="5.3">
+<h2><span class="header-section-number">5.3</span> Cohort life tables
+with age-shift</h2>
+<p>Age-shifted cohort life tables are an approximation to full cohort
+life tables. Full cohort life tables apply a trend or improvment factors
+to the death probabilities of a base year to obtail death probabilities
+for a given birth year. Age-shifting rather modifies the age of the
+corresponding person and uses the same, unmodified base table for all
+cohorts. Basically, it works like this:</p>
 <blockquote>
-<p>A 60-year old born in 1950 has the same death probability as a 50-year old born in 1900, so instead of looking at the cohort 1950, we can look at the cohort 1900 and for a person born 1950 we treat him as if he were 10 years younger.</p>
+<p>A 60-year old born in 1950 has the same death probability as a
+50-year old born in 1900, so instead of looking at the cohort 1950, we
+can look at the cohort 1900 and for a person born 1950 we treat him as
+if he were 10 years younger.</p>
 </blockquote>
-<p>So, an age-shifted cohort life table just needs the base table and for each birth year the amount the age is modified.</p>
-<p>For those people, who think visually, age shifting works on the death probabilities as following: A normal trend moves the <span class="math inline">\(q_x\)</span> curve downwards. Age-shifting approximates this by shifting the <span class="math inline">\(q_x\)</span> curve to the right without modifying its values.</p>
-<p>The following example clearly shows this, with the blue curve being the base table for YOB 2011. A full trend projection moves the curve down to the green line, while age-shifting moves the base curve to the right so that it coincides as much as possible with the exact (green) line.</p>
-<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1"></a>baseTableShift =<span class="st"> </span><span class="kw">getCohortTable</span>(atPlus2, <span class="dt">YOB =</span> <span class="dv">2011</span>);</span>
-<span id="cb17-2"><a href="#cb17-2"></a>baseTableShift<span class="op">@</span>name =<span class="st"> &quot;Base table of the shift (YOB 2011)&quot;</span></span>
-<span id="cb17-3"><a href="#cb17-3"></a></span>
-<span id="cb17-4"><a href="#cb17-4"></a>atShifted =<span class="st"> </span><span class="kw">mortalityTable.ageShift</span>(</span>
-<span id="cb17-5"><a href="#cb17-5"></a>    <span class="dt">name =</span> <span class="st">&quot;Approximation with age shift&quot;</span>,</span>
-<span id="cb17-6"><a href="#cb17-6"></a>    <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span>
-<span id="cb17-7"><a href="#cb17-7"></a>    <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(baseTableShift),</span>
-<span id="cb17-8"><a href="#cb17-8"></a>    <span class="dt">ages =</span> <span class="kw">ages</span>(baseTableShift),</span>
-<span id="cb17-9"><a href="#cb17-9"></a>    <span class="dt">ageShifts =</span> <span class="kw">data.frame</span>(</span>
-<span id="cb17-10"><a href="#cb17-10"></a>        <span class="dt">shifts =</span> <span class="kw">c</span>(</span>
-<span id="cb17-11"><a href="#cb17-11"></a>            <span class="kw">rep</span>( <span class="dv">0</span>, <span class="dv">3</span>), </span>
-<span id="cb17-12"><a href="#cb17-12"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">1</span>, <span class="dv">3</span>), </span>
-<span id="cb17-13"><a href="#cb17-13"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">2</span>, <span class="dv">3</span>), </span>
-<span id="cb17-14"><a href="#cb17-14"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">3</span>, <span class="dv">3</span>), </span>
-<span id="cb17-15"><a href="#cb17-15"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">4</span>, <span class="dv">3</span>), </span>
-<span id="cb17-16"><a href="#cb17-16"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">5</span>, <span class="dv">3</span>), </span>
-<span id="cb17-17"><a href="#cb17-17"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">6</span>, <span class="dv">3</span>)</span>
-<span id="cb17-18"><a href="#cb17-18"></a>        ),</span>
-<span id="cb17-19"><a href="#cb17-19"></a>        <span class="dt">row.names =</span> <span class="dv">2011</span><span class="op">:</span><span class="dv">2031</span></span>
-<span id="cb17-20"><a href="#cb17-20"></a>    )</span>
-<span id="cb17-21"><a href="#cb17-21"></a>)</span>
-<span id="cb17-22"><a href="#cb17-22"></a></span>
-<span id="cb17-23"><a href="#cb17-23"></a><span class="kw">ageShift</span>(atShifted, <span class="dt">YOB =</span> <span class="dv">2021</span>)</span>
-<span id="cb17-24"><a href="#cb17-24"></a><span class="co">#&gt; [1] -3</span></span>
-<span id="cb17-25"><a href="#cb17-25"></a></span>
-<span id="cb17-26"><a href="#cb17-26"></a><span class="kw">plot</span>(baseTableShift, atPlus2, atShifted, <span class="dt">YOB =</span> <span class="dv">2021</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code></pre></div>
+<p>So, an age-shifted cohort life table just needs the base table and
+for each birth year the amount the age is modified.</p>
+<p>For those people, who think visually, age shifting works on the death
+probabilities as following: A normal trend moves the <span class="math inline">\(q_x\)</span> curve downwards. Age-shifting
+approximates this by shifting the <span class="math inline">\(q_x\)</span> curve to the right without modifying
+its values.</p>
+<p>The following example clearly shows this, with the blue curve being
+the base table for YOB 2011. A full trend projection moves the curve
+down to the green line, while age-shifting moves the base curve to the
+right so that it coincides as much as possible with the exact (green)
+line.</p>
+<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" tabindex="-1"></a>baseTableShift <span class="ot">=</span> <span class="fu">getCohortTable</span>(atPlus2, <span class="at">YOB =</span> <span class="dv">2011</span>);</span>
+<span id="cb17-2"><a href="#cb17-2" tabindex="-1"></a>baseTableShift<span class="sc">@</span>name <span class="ot">=</span> <span class="st">&quot;Base table of the shift (YOB 2011)&quot;</span></span>
+<span id="cb17-3"><a href="#cb17-3" tabindex="-1"></a></span>
+<span id="cb17-4"><a href="#cb17-4" tabindex="-1"></a>atShifted <span class="ot">=</span> <span class="fu">mortalityTable.ageShift</span>(</span>
+<span id="cb17-5"><a href="#cb17-5" tabindex="-1"></a>    <span class="at">name =</span> <span class="st">&quot;Approximation with age shift&quot;</span>,</span>
+<span id="cb17-6"><a href="#cb17-6" tabindex="-1"></a>    <span class="at">baseYear =</span> <span class="dv">2011</span>,</span>
+<span id="cb17-7"><a href="#cb17-7" tabindex="-1"></a>    <span class="at">deathProbs =</span> <span class="fu">deathProbabilities</span>(baseTableShift),</span>
+<span id="cb17-8"><a href="#cb17-8" tabindex="-1"></a>    <span class="at">ages =</span> <span class="fu">ages</span>(baseTableShift),</span>
+<span id="cb17-9"><a href="#cb17-9" tabindex="-1"></a>    <span class="at">ageShifts =</span> <span class="fu">data.frame</span>(</span>
+<span id="cb17-10"><a href="#cb17-10" tabindex="-1"></a>        <span class="at">shifts =</span> <span class="fu">c</span>(</span>
+<span id="cb17-11"><a href="#cb17-11" tabindex="-1"></a>            <span class="fu">rep</span>( <span class="dv">0</span>, <span class="dv">3</span>), </span>
+<span id="cb17-12"><a href="#cb17-12" tabindex="-1"></a>            <span class="fu">rep</span>(<span class="sc">-</span><span class="dv">1</span>, <span class="dv">3</span>), </span>
+<span id="cb17-13"><a href="#cb17-13" tabindex="-1"></a>            <span class="fu">rep</span>(<span class="sc">-</span><span class="dv">2</span>, <span class="dv">3</span>), </span>
+<span id="cb17-14"><a href="#cb17-14" tabindex="-1"></a>            <span class="fu">rep</span>(<span class="sc">-</span><span class="dv">3</span>, <span class="dv">3</span>), </span>
+<span id="cb17-15"><a href="#cb17-15" tabindex="-1"></a>            <span class="fu">rep</span>(<span class="sc">-</span><span class="dv">4</span>, <span class="dv">3</span>), </span>
+<span id="cb17-16"><a href="#cb17-16" tabindex="-1"></a>            <span class="fu">rep</span>(<span class="sc">-</span><span class="dv">5</span>, <span class="dv">3</span>), </span>
+<span id="cb17-17"><a href="#cb17-17" tabindex="-1"></a>            <span class="fu">rep</span>(<span class="sc">-</span><span class="dv">6</span>, <span class="dv">3</span>)</span>
+<span id="cb17-18"><a href="#cb17-18" tabindex="-1"></a>        ),</span>
+<span id="cb17-19"><a href="#cb17-19" tabindex="-1"></a>        <span class="at">row.names =</span> <span class="dv">2011</span><span class="sc">:</span><span class="dv">2031</span></span>
+<span id="cb17-20"><a href="#cb17-20" tabindex="-1"></a>    )</span>
+<span id="cb17-21"><a href="#cb17-21" tabindex="-1"></a>)</span>
+<span id="cb17-22"><a href="#cb17-22" tabindex="-1"></a></span>
+<span id="cb17-23"><a href="#cb17-23" tabindex="-1"></a><span class="fu">ageShift</span>(atShifted, <span class="at">YOB =</span> <span class="dv">2021</span>)</span>
+<span id="cb17-24"><a href="#cb17-24" tabindex="-1"></a><span class="co">#&gt; [1] -3</span></span>
+<span id="cb17-25"><a href="#cb17-25" tabindex="-1"></a></span>
+<span id="cb17-26"><a href="#cb17-26" tabindex="-1"></a><span class="fu">plot</span>(baseTableShift, atPlus2, atShifted, <span class="at">YOB =</span> <span class="dv">2021</span>, <span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code></pre></div>
 <p><img src="" /><!-- --></p>
-<p>As one can see, for ages above 40 years, the table with 2% yearly trend and the corresponding age-shifted table have roughly the same mortalities. Below 40 years, the two are very different, so this approximation through age-shifting should really be used with extreme care!</p>
+<p>As one can see, for ages above 40 years, the table with 2% yearly
+trend and the corresponding age-shifted table have roughly the same
+mortalities. Below 40 years, the two are very different, so this
+approximation through age-shifting should really be used with extreme
+care!</p>
 </div>
 </div>
-<div id="modifying-life-table-objects" class="section level1">
-<h1><span class="header-section-number">6</span> Modifying life table objects</h1>
-<div id="copying-life-tables" class="section level2">
-<h2><span class="header-section-number">6.1</span> Copying life tables</h2>
-<p>Life tables are simple pass-by-value S4 objects, so copying works by simple assignment.</p>
-<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1"></a>b =<span class="st"> </span>AVOe2005R.female </span>
-<span id="cb18-2"><a href="#cb18-2"></a>b<span class="op">@</span>name =<span class="st"> &quot;Modified Copy&quot;</span></span>
-<span id="cb18-3"><a href="#cb18-3"></a><span class="co"># only b is modified, not the original table</span></span>
-<span id="cb18-4"><a href="#cb18-4"></a>b<span class="op">@</span>modification =<span class="st"> </span><span class="cf">function</span>(qx) <span class="kw">pmax</span>(qx, <span class="fl">0.01</span>)  </span>
-<span id="cb18-5"><a href="#cb18-5"></a><span class="kw">plot</span>(AVOe2005R.female, b, <span class="dt">YOB =</span> <span class="dv">2000</span>)</span></code></pre></div>
+<div id="modifying-life-table-objects" class="section level1" number="6">
+<h1><span class="header-section-number">6</span> Modifying life table
+objects</h1>
+<div id="copying-life-tables" class="section level2" number="6.1">
+<h2><span class="header-section-number">6.1</span> Copying life
+tables</h2>
+<p>Life tables are simple pass-by-value S4 objects, so copying works by
+simple assignment.</p>
+<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" tabindex="-1"></a>b <span class="ot">=</span> AVOe2005R.female </span>
+<span id="cb18-2"><a href="#cb18-2" tabindex="-1"></a>b<span class="sc">@</span>name <span class="ot">=</span> <span class="st">&quot;Modified Copy&quot;</span></span>
+<span id="cb18-3"><a href="#cb18-3" tabindex="-1"></a><span class="co"># only b is modified, not the original table</span></span>
+<span id="cb18-4"><a href="#cb18-4" tabindex="-1"></a>b<span class="sc">@</span>modification <span class="ot">=</span> <span class="cf">function</span>(qx) <span class="fu">pmax</span>(qx, <span class="fl">0.01</span>)  </span>
+<span id="cb18-5"><a href="#cb18-5" tabindex="-1"></a><span class="fu">plot</span>(AVOe2005R.female, b, <span class="at">YOB =</span> <span class="dv">2000</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 </div>
-<div id="adding-a-security-loading-to-the-raw-probabilities" class="section level2">
-<h2><span class="header-section-number">6.2</span> Adding a security loading to the raw probabilities</h2>
-<p>When calculating premiums for life insurance contracts, one often needs to add a certain security loading on the raw death probabilities (e.g. 10% increased death probabilities) to account for statistical fluctuations. This can be easily done with the <code>setLoading</code> function that returns a copy of the given table and adds the given security loading.</p>
-<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1"></a>AVOe2005R.female.sec =<span class="st"> </span><span class="kw">setLoading</span>(AVOe2005R.female, <span class="dt">loading =</span> <span class="fl">0.1</span>);</span>
-<span id="cb19-2"><a href="#cb19-2"></a><span class="co"># Make sure the modified table has a new name, otherwise plots might break</span></span>
-<span id="cb19-3"><a href="#cb19-3"></a>AVOe2005R.female.sec<span class="op">@</span>name =<span class="st"> &quot;Table with 10% loading&quot;</span></span>
-<span id="cb19-4"><a href="#cb19-4"></a><span class="kw">plot</span>(AVOe2005R.female, AVOe2005R.female.sec, <span class="dt">title =</span> <span class="st">&quot;Original and modified table&quot;</span>)</span></code></pre></div>
+<div id="adding-a-security-loading-to-the-raw-probabilities" class="section level2" number="6.2">
+<h2><span class="header-section-number">6.2</span> Adding a security
+loading to the raw probabilities</h2>
+<p>When calculating premiums for life insurance contracts, one often
+needs to add a certain security loading on the raw death probabilities
+(e.g. 10% increased death probabilities) to account for statistical
+fluctuations. This can be easily done with the <code>setLoading</code>
+function that returns a copy of the given table and adds the given
+security loading.</p>
+<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" tabindex="-1"></a>AVOe2005R.female.sec <span class="ot">=</span> <span class="fu">setLoading</span>(AVOe2005R.female, <span class="at">loading =</span> <span class="fl">0.1</span>);</span>
+<span id="cb19-2"><a href="#cb19-2" tabindex="-1"></a><span class="co"># Make sure the modified table has a new name, otherwise plots might break</span></span>
+<span id="cb19-3"><a href="#cb19-3" tabindex="-1"></a>AVOe2005R.female.sec<span class="sc">@</span>name <span class="ot">=</span> <span class="st">&quot;Table with 10% loading&quot;</span></span>
+<span id="cb19-4"><a href="#cb19-4" tabindex="-1"></a><span class="fu">plot</span>(AVOe2005R.female, AVOe2005R.female.sec, <span class="at">title =</span> <span class="st">&quot;Original and modified table&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 </div>
-<div id="adding-a-modification-to-the-raw-probabilities" class="section level2">
-<h2><span class="header-section-number">6.3</span> Adding a modification to the raw probabilities</h2>
-<p>Some uses require post-processing of the death probabilities, like adding a lower bound for the death probabilities. To achive this, all <code>mortalityTable</code>-derived classes have a slot <code>modification</code> that takes a function that is passed the vector of death probabilities.</p>
-<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1"></a>AVOe2005R.female.mod =<span class="st"> </span><span class="kw">setModification</span>(AVOe2005R.female, <span class="dt">modification =</span> <span class="cf">function</span>(qx) <span class="kw">pmax</span>(<span class="fl">0.03</span>, qx));</span>
-<span id="cb20-2"><a href="#cb20-2"></a><span class="co"># Make sure the modified table has a new name, otherwise plots might break</span></span>
-<span id="cb20-3"><a href="#cb20-3"></a>AVOe2005R.female.mod<span class="op">@</span>name =<span class="st"> &quot;Modified table (lower bound of 3%)&quot;</span></span>
-<span id="cb20-4"><a href="#cb20-4"></a><span class="kw">plot</span>(AVOe2005R.female, AVOe2005R.female.mod, <span class="dt">title =</span> <span class="st">&quot;Original and modified table&quot;</span>)</span></code></pre></div>
+<div id="adding-a-modification-to-the-raw-probabilities" class="section level2" number="6.3">
+<h2><span class="header-section-number">6.3</span> Adding a modification
+to the raw probabilities</h2>
+<p>Some uses require post-processing of the death probabilities, like
+adding a lower bound for the death probabilities. To achive this, all
+<code>mortalityTable</code>-derived classes have a slot
+<code>modification</code> that takes a function that is passed the
+vector of death probabilities.</p>
+<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" tabindex="-1"></a>AVOe2005R.female.mod <span class="ot">=</span> <span class="fu">setModification</span>(AVOe2005R.female, <span class="at">modification =</span> <span class="cf">function</span>(qx) <span class="fu">pmax</span>(<span class="fl">0.03</span>, qx));</span>
+<span id="cb20-2"><a href="#cb20-2" tabindex="-1"></a><span class="co"># Make sure the modified table has a new name, otherwise plots might break</span></span>
+<span id="cb20-3"><a href="#cb20-3" tabindex="-1"></a>AVOe2005R.female.mod<span class="sc">@</span>name <span class="ot">=</span> <span class="st">&quot;Modified table (lower bound of 3%)&quot;</span></span>
+<span id="cb20-4"><a href="#cb20-4" tabindex="-1"></a><span class="fu">plot</span>(AVOe2005R.female, AVOe2005R.female.mod, <span class="at">title =</span> <span class="st">&quot;Original and modified table&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 </div>
 </div>
-<div id="creating-mortality-tables-from-data-and-modifying-them-using-various-helper-functions" class="section level1">
-<h1><span class="header-section-number">7</span> Creating mortality tables from data and modifying them using various helper functions</h1>
-<p>The package MortalityTables not only provides the data structures and some examples of mortality tables, it also provides several functions to create mortality tables from raw data and modify them. The package provides several editing functions, which all begin with the prefix <code>mT.</code>.</p>
-<p>Let us take as an example the provided dataset <code>PopulationData.AT2017</code> of Austrian population data (exposure and deaths counts for the year 2017).</p>
-<p>For simplicity, we only look at the unisex data (i.e. male + female numbers, which are already provided as total exposure and total deaths). The raw mortality can then be calculated as </p>
-<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1"></a><span class="kw">library</span>(tidyverse)</span>
-<span id="cb21-2"><a href="#cb21-2"></a><span class="kw">data</span>(<span class="st">&quot;PopulationData.AT2017&quot;</span>, <span class="dt">package =</span> <span class="st">&quot;MortalityTables&quot;</span>)</span>
-<span id="cb21-3"><a href="#cb21-3"></a>PopulationData.AT2017.raw =<span class="st"> </span>PopulationData.AT2017 <span class="op">%&gt;%</span></span>
-<span id="cb21-4"><a href="#cb21-4"></a><span class="st">  </span><span class="kw">select</span>(age, exposure.total, deaths.total) <span class="op">%&gt;%</span></span>
-<span id="cb21-5"><a href="#cb21-5"></a><span class="st">  </span><span class="kw">mutate</span>(<span class="dt">qraw =</span> deaths.total <span class="op">/</span><span class="st"> </span>(exposure.total <span class="op">+</span><span class="st"> </span>deaths.total<span class="op">/</span><span class="dv">2</span>))</span></code></pre></div>
-<p>We now have all data needed to put it into a <code>MortalityTable</code> object (some fields like the exposre and the data list are not strictly needed, but can be useful later on):</p>
-<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1"></a>PopulationTable.AT2017 =<span class="st"> </span><span class="kw">mortalityTable.period</span>(</span>
-<span id="cb22-2"><a href="#cb22-2"></a>  <span class="dt">name =</span> <span class="st">&quot;Austrian Population Mortality 2017 (raw)&quot;</span>, </span>
-<span id="cb22-3"><a href="#cb22-3"></a>  <span class="dt">baseYear =</span> <span class="dv">2017</span>,</span>
-<span id="cb22-4"><a href="#cb22-4"></a>  <span class="dt">deathProbs =</span> PopulationData.AT2017.raw<span class="op">$</span>qraw,</span>
-<span id="cb22-5"><a href="#cb22-5"></a>  <span class="dt">ages =</span> PopulationData.AT2017.raw<span class="op">$</span>age,</span>
-<span id="cb22-6"><a href="#cb22-6"></a>  <span class="dt">exposures =</span> PopulationData.AT2017.raw<span class="op">$</span>exposure.total,</span>
-<span id="cb22-7"><a href="#cb22-7"></a>  <span class="dt">data =</span> <span class="kw">list</span>(</span>
-<span id="cb22-8"><a href="#cb22-8"></a>    <span class="dt">deaths =</span> PopulationData.AT2017.raw<span class="op">$</span>deaths.total,</span>
-<span id="cb22-9"><a href="#cb22-9"></a>    <span class="dt">dim =</span> <span class="kw">list</span>(<span class="dt">sex =</span> <span class="st">&quot;u&quot;</span>, <span class="dt">collar =</span> <span class="st">&quot;Population&quot;</span>, <span class="dt">type =</span> <span class="st">&quot;raw&quot;</span>, <span class="dt">year =</span> <span class="st">&quot;2017&quot;</span>)</span>
-<span id="cb22-10"><a href="#cb22-10"></a>  )</span>
-<span id="cb22-11"><a href="#cb22-11"></a>)</span>
-<span id="cb22-12"><a href="#cb22-12"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (raw), 2017&quot;</span>)</span></code></pre></div>
+<div id="creating-mortality-tables-from-data-and-modifying-them-using-various-helper-functions" class="section level1" number="7">
+<h1><span class="header-section-number">7</span> Creating mortality
+tables from data and modifying them using various helper functions</h1>
+<p>The package MortalityTables not only provides the data structures and
+some examples of mortality tables, it also provides several functions to
+create mortality tables from raw data and modify them. The package
+provides several editing functions, which all begin with the prefix
+<code>mT.</code>.</p>
+<p>Let us take as an example the provided dataset
+<code>PopulationData.AT2017</code> of Austrian population data (exposure
+and deaths counts for the year 2017).</p>
+<p>For simplicity, we only look at the unisex data (i.e. male + female
+numbers, which are already provided as total exposure and total deaths).
+The raw mortality can then be calculated as </p>
+<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" tabindex="-1"></a><span class="fu">library</span>(tidyverse)</span>
+<span id="cb21-2"><a href="#cb21-2" tabindex="-1"></a><span class="fu">data</span>(<span class="st">&quot;PopulationData.AT2017&quot;</span>, <span class="at">package =</span> <span class="st">&quot;MortalityTables&quot;</span>)</span>
+<span id="cb21-3"><a href="#cb21-3" tabindex="-1"></a>PopulationData.AT2017.raw <span class="ot">=</span> PopulationData.AT2017 <span class="sc">%&gt;%</span></span>
+<span id="cb21-4"><a href="#cb21-4" tabindex="-1"></a>  <span class="fu">select</span>(age, exposure.total, deaths.total) <span class="sc">%&gt;%</span></span>
+<span id="cb21-5"><a href="#cb21-5" tabindex="-1"></a>  <span class="fu">mutate</span>(<span class="at">qraw =</span> deaths.total <span class="sc">/</span> (exposure.total <span class="sc">+</span> deaths.total<span class="sc">/</span><span class="dv">2</span>))</span></code></pre></div>
+<p>We now have all data needed to put it into a
+<code>MortalityTable</code> object (some fields like the exposre and the
+data list are not strictly needed, but can be useful later on):</p>
+<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" tabindex="-1"></a>PopulationTable.AT2017 <span class="ot">=</span> <span class="fu">mortalityTable.period</span>(</span>
+<span id="cb22-2"><a href="#cb22-2" tabindex="-1"></a>  <span class="at">name =</span> <span class="st">&quot;Austrian Population Mortality 2017 (raw)&quot;</span>, </span>
+<span id="cb22-3"><a href="#cb22-3" tabindex="-1"></a>  <span class="at">baseYear =</span> <span class="dv">2017</span>,</span>
+<span id="cb22-4"><a href="#cb22-4" tabindex="-1"></a>  <span class="at">deathProbs =</span> PopulationData.AT2017.raw<span class="sc">$</span>qraw,</span>
+<span id="cb22-5"><a href="#cb22-5" tabindex="-1"></a>  <span class="at">ages =</span> PopulationData.AT2017.raw<span class="sc">$</span>age,</span>
+<span id="cb22-6"><a href="#cb22-6" tabindex="-1"></a>  <span class="at">exposures =</span> PopulationData.AT2017.raw<span class="sc">$</span>exposure.total,</span>
+<span id="cb22-7"><a href="#cb22-7" tabindex="-1"></a>  <span class="at">data =</span> <span class="fu">list</span>(</span>
+<span id="cb22-8"><a href="#cb22-8" tabindex="-1"></a>    <span class="at">deaths =</span> PopulationData.AT2017.raw<span class="sc">$</span>deaths.total,</span>
+<span id="cb22-9"><a href="#cb22-9" tabindex="-1"></a>    <span class="at">dim =</span> <span class="fu">list</span>(<span class="at">sex =</span> <span class="st">&quot;u&quot;</span>, <span class="at">collar =</span> <span class="st">&quot;Population&quot;</span>, <span class="at">type =</span> <span class="st">&quot;raw&quot;</span>, <span class="at">year =</span> <span class="st">&quot;2017&quot;</span>)</span>
+<span id="cb22-10"><a href="#cb22-10" tabindex="-1"></a>  )</span>
+<span id="cb22-11"><a href="#cb22-11" tabindex="-1"></a>)</span>
+<span id="cb22-12"><a href="#cb22-12" tabindex="-1"></a><span class="fu">plotMortalityTables</span>(PopulationTable.AT2017, <span class="at">title =</span> <span class="st">&quot;Austrian population mortality (raw), 2017&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
-<p>Of course, we sooner or later want to work with a smooth table rather than the raw death probabilities. The most common approach to smoothing mortality tables is the Whittaker-Henderson method of graduation, which is provided by the function <code>whittaker.mortalityTable()</code>. The parameters are the <span class="math inline">\(\lambda\)</span> smoothing parameter (determining how smooth the result shall be, which in turn means that the result might be quite distant from the raw probabilities in some ages) and the order of differences <span class="math inline">\(d\)</span> (the default 2 typically suffices). Since we have the exposures available and stored inside the table, the <code>whittaker.mortalityTable()</code> function will use the exposures as weight and so try to match age ranges with high exposure much better than e.g. old ages with hardly any living.</p>
-<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1"></a>PopulationTable.AT2017.smooth =<span class="st"> </span>PopulationTable.AT2017 <span class="op">%&gt;%</span></span>
-<span id="cb23-2"><a href="#cb23-2"></a><span class="st">  </span><span class="kw">whittaker.mortalityTable</span>(<span class="dt">lambda =</span> <span class="dv">1</span><span class="op">/</span><span class="dv">10</span>, <span class="dt">d =</span> <span class="dv">2</span>, <span class="dt">name.postfix =</span> <span class="st">&quot;, Whittaker&quot;</span>) <span class="op">%&gt;%</span></span>
-<span id="cb23-3"><a href="#cb23-3"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed&quot;</span>)</span>
-<span id="cb23-4"><a href="#cb23-4"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (raw and smoothed), 2017&quot;</span>)  <span class="op">+</span></span>
-<span id="cb23-5"><a href="#cb23-5"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
-<p><img src="" /><!-- --> As a side note, this example also shows how the additional dimensional infos set be either the constructor of the table or the <code>mT.setDimInfo()</code> function and stored in the <code>table$data$dim</code> list can be used by ggplot as aesthetics.</p>
-<p>Now, if we look at the exposures, we see that above age 95 we are below an exposure of 5000 and at age 100 we are below exposure 500. So, for these old ages we apparently do not have enough data to derive mortalities with sufficient significance. So, let’s cut the table at age 100:</p>
-<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1"></a>PopulationData.AT2017.raw <span class="op">%&gt;%</span><span class="st"> </span><span class="kw">filter</span>(age <span class="op">&gt;</span><span class="st"> </span><span class="dv">90</span>)</span>
-<span id="cb24-2"><a href="#cb24-2"></a><span class="co">#&gt; # A tibble: 20 x 4</span></span>
-<span id="cb24-3"><a href="#cb24-3"></a><span class="co">#&gt;      age exposure.total deaths.total  qraw</span></span>
-<span id="cb24-4"><a href="#cb24-4"></a><span class="co">#&gt;    &lt;dbl&gt;          &lt;dbl&gt;        &lt;dbl&gt; &lt;dbl&gt;</span></span>
-<span id="cb24-5"><a href="#cb24-5"></a><span class="co">#&gt;  1    91       15616.           2963 0.173</span></span>
-<span id="cb24-6"><a href="#cb24-6"></a><span class="co">#&gt;  2    92       12870.           2721 0.191</span></span>
-<span id="cb24-7"><a href="#cb24-7"></a><span class="co">#&gt;  3    93       10245.           2451 0.214</span></span>
-<span id="cb24-8"><a href="#cb24-8"></a><span class="co">#&gt;  4    94        8024.           2113 0.233</span></span>
-<span id="cb24-9"><a href="#cb24-9"></a><span class="co">#&gt;  5    95        5875.           1727 0.256</span></span>
-<span id="cb24-10"><a href="#cb24-10"></a><span class="co">#&gt;  6    96        4041.           1382 0.292</span></span>
-<span id="cb24-11"><a href="#cb24-11"></a><span class="co">#&gt;  7    97        2480.            885 0.303</span></span>
-<span id="cb24-12"><a href="#cb24-12"></a><span class="co">#&gt;  8    98        1139.            433 0.320</span></span>
-<span id="cb24-13"><a href="#cb24-13"></a><span class="co">#&gt;  9    99         591.            237 0.334</span></span>
-<span id="cb24-14"><a href="#cb24-14"></a><span class="co">#&gt; 10   100         405.            182 0.367</span></span>
-<span id="cb24-15"><a href="#cb24-15"></a><span class="co">#&gt; 11   101         259.            116 0.366</span></span>
-<span id="cb24-16"><a href="#cb24-16"></a><span class="co">#&gt; 12   102         208.             98 0.382</span></span>
-<span id="cb24-17"><a href="#cb24-17"></a><span class="co">#&gt; 13   103         132.             82 0.473</span></span>
-<span id="cb24-18"><a href="#cb24-18"></a><span class="co">#&gt; 14   104          70.8            42 0.458</span></span>
-<span id="cb24-19"><a href="#cb24-19"></a><span class="co">#&gt; 15   105          37.7            26 0.513</span></span>
-<span id="cb24-20"><a href="#cb24-20"></a><span class="co">#&gt; 16   106          16.9            14 0.586</span></span>
-<span id="cb24-21"><a href="#cb24-21"></a><span class="co">#&gt; 17   107           6.98            2 0.251</span></span>
-<span id="cb24-22"><a href="#cb24-22"></a><span class="co">#&gt; 18   108           3.37            3 0.616</span></span>
-<span id="cb24-23"><a href="#cb24-23"></a><span class="co">#&gt; 19   109           0.8             0 0    </span></span>
-<span id="cb24-24"><a href="#cb24-24"></a><span class="co">#&gt; 20   110           0.17            1 1.49</span></span>
-<span id="cb24-25"><a href="#cb24-25"></a>PopulationTable.AT2017.cut =<span class="st"> </span>PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb24-26"><a href="#cb24-26"></a><span class="st">  </span><span class="kw">mT.fillAges</span>(<span class="dv">0</span><span class="op">:</span><span class="dv">99</span>) <span class="op">%&gt;%</span></span>
-<span id="cb24-27"><a href="#cb24-27"></a><span class="st">  </span><span class="kw">mT.setName</span>(<span class="st">&quot;Austrian Population Mortality 2017, Whittaker-smoothed and cut at age 99&quot;</span>)</span></code></pre></div>
-<p>Even though we don’t have enough statistical data to derive significant mortalities above 100, we still want to create a table that covers this age range by extrapolating the significant table to higher ages. This is typically done by selecting a fitting function and an appropriate age range, where the function is fit to the data. The parameters of the function calibrated to match the mortalities in the fitting range as good as possible are then used to extrapolate the mortalities with the function to ages outside the existing table.</p>
-<p>The function <code>mT.fitExtrapolationLaw</code> uses the package <code>MortalityLaws</code> and the function <code>MortalityLaws::MortalityLaw()</code> to fit one of the mortality laws (see <code>MortalityLaws::availableLaws()</code> for all available laws) to the data and use that law to extrapolate to the desired ages, with a potential feding-in or fading-out age range.</p>
-<p>In this example, we fit a Heligman-Pollard-type law (HP2) to the raw data and use it to extrapolate up to age 120. The age rante 80–95 is used to linearly switch from the (smoothed) death probabilities of the input table to the death probabilities calculated from the fitted law. So in this case, all observed probabilities above age 95 are not used at all anyway.</p>
-<div class="sourceCode" id="cb25"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1"></a>PopulationTable.AT2017.ex =<span class="st"> </span>PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb25-2"><a href="#cb25-2"></a><span class="st">  </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb25-3"><a href="#cb25-3"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed and extrapolated&quot;</span>)</span>
-<span id="cb25-4"><a href="#cb25-4"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (raw and smoothed), 2017&quot;</span>)  <span class="op">+</span></span>
-<span id="cb25-5"><a href="#cb25-5"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
+<p>Of course, we sooner or later want to work with a smooth table rather
+than the raw death probabilities. The most common approach to smoothing
+mortality tables is the Whittaker-Henderson method of graduation, which
+is provided by the function <code>whittaker.mortalityTable()</code>. The
+parameters are the <span class="math inline">\(\lambda\)</span>
+smoothing parameter (determining how smooth the result shall be, which
+in turn means that the result might be quite distant from the raw
+probabilities in some ages) and the order of differences <span class="math inline">\(d\)</span> (the default 2 typically suffices).
+Since we have the exposures available and stored inside the table, the
+<code>whittaker.mortalityTable()</code> function will use the exposures
+as weight and so try to match age ranges with high exposure much better
+than e.g. old ages with hardly any living.</p>
+<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" tabindex="-1"></a>PopulationTable.AT2017.smooth <span class="ot">=</span> PopulationTable.AT2017 <span class="sc">%&gt;%</span></span>
+<span id="cb23-2"><a href="#cb23-2" tabindex="-1"></a>  <span class="fu">whittaker.mortalityTable</span>(<span class="at">lambda =</span> <span class="dv">1</span><span class="sc">/</span><span class="dv">10</span>, <span class="at">d =</span> <span class="dv">2</span>, <span class="at">name.postfix =</span> <span class="st">&quot;, Whittaker&quot;</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb23-3"><a href="#cb23-3" tabindex="-1"></a>  <span class="fu">mT.setDimInfo</span>(<span class="at">type =</span> <span class="st">&quot;smoothed&quot;</span>)</span>
+<span id="cb23-4"><a href="#cb23-4" tabindex="-1"></a><span class="fu">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, <span class="at">title =</span> <span class="st">&quot;Austrian population mortality (raw and smoothed), 2017&quot;</span>)  <span class="sc">+</span></span>
+<span id="cb23-5"><a href="#cb23-5" tabindex="-1"></a>  <span class="fu">aes</span>(<span class="at">colour =</span> type)</span></code></pre></div>
+<p><img src="" /><!-- -->
+As a side note, this example also shows how the additional dimensional
+infos set be either the constructor of the table or the
+<code>mT.setDimInfo()</code> function and stored in the
+<code>table$data$dim</code> list can be used by ggplot as
+aesthetics.</p>
+<p>Now, if we look at the exposures, we see that above age 95 we are
+below an exposure of 5000 and at age 100 we are below exposure 500. So,
+for these old ages we apparently do not have enough data to derive
+mortalities with sufficient significance. So, let’s cut the table at age
+100:</p>
+<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" tabindex="-1"></a>PopulationData.AT2017.raw <span class="sc">%&gt;%</span> <span class="fu">filter</span>(age <span class="sc">&gt;</span> <span class="dv">90</span>)</span>
+<span id="cb24-2"><a href="#cb24-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 20 × 4</span></span>
+<span id="cb24-3"><a href="#cb24-3" tabindex="-1"></a><span class="co">#&gt;      age exposure.total deaths.total  qraw</span></span>
+<span id="cb24-4"><a href="#cb24-4" tabindex="-1"></a><span class="co">#&gt;    &lt;dbl&gt;          &lt;dbl&gt;        &lt;dbl&gt; &lt;dbl&gt;</span></span>
+<span id="cb24-5"><a href="#cb24-5" tabindex="-1"></a><span class="co">#&gt;  1    91       15616.           2963 0.173</span></span>
+<span id="cb24-6"><a href="#cb24-6" tabindex="-1"></a><span class="co">#&gt;  2    92       12870.           2721 0.191</span></span>
+<span id="cb24-7"><a href="#cb24-7" tabindex="-1"></a><span class="co">#&gt;  3    93       10245.           2451 0.214</span></span>
+<span id="cb24-8"><a href="#cb24-8" tabindex="-1"></a><span class="co">#&gt;  4    94        8024.           2113 0.233</span></span>
+<span id="cb24-9"><a href="#cb24-9" tabindex="-1"></a><span class="co">#&gt;  5    95        5875.           1727 0.256</span></span>
+<span id="cb24-10"><a href="#cb24-10" tabindex="-1"></a><span class="co">#&gt;  6    96        4041.           1382 0.292</span></span>
+<span id="cb24-11"><a href="#cb24-11" tabindex="-1"></a><span class="co">#&gt;  7    97        2480.            885 0.303</span></span>
+<span id="cb24-12"><a href="#cb24-12" tabindex="-1"></a><span class="co">#&gt;  8    98        1139.            433 0.320</span></span>
+<span id="cb24-13"><a href="#cb24-13" tabindex="-1"></a><span class="co">#&gt;  9    99         591.            237 0.334</span></span>
+<span id="cb24-14"><a href="#cb24-14" tabindex="-1"></a><span class="co">#&gt; 10   100         405.            182 0.367</span></span>
+<span id="cb24-15"><a href="#cb24-15" tabindex="-1"></a><span class="co">#&gt; 11   101         259.            116 0.366</span></span>
+<span id="cb24-16"><a href="#cb24-16" tabindex="-1"></a><span class="co">#&gt; 12   102         208.             98 0.382</span></span>
+<span id="cb24-17"><a href="#cb24-17" tabindex="-1"></a><span class="co">#&gt; 13   103         132.             82 0.473</span></span>
+<span id="cb24-18"><a href="#cb24-18" tabindex="-1"></a><span class="co">#&gt; 14   104          70.8            42 0.458</span></span>
+<span id="cb24-19"><a href="#cb24-19" tabindex="-1"></a><span class="co">#&gt; 15   105          37.7            26 0.513</span></span>
+<span id="cb24-20"><a href="#cb24-20" tabindex="-1"></a><span class="co">#&gt; 16   106          16.9            14 0.586</span></span>
+<span id="cb24-21"><a href="#cb24-21" tabindex="-1"></a><span class="co">#&gt; 17   107           6.98            2 0.251</span></span>
+<span id="cb24-22"><a href="#cb24-22" tabindex="-1"></a><span class="co">#&gt; 18   108           3.37            3 0.616</span></span>
+<span id="cb24-23"><a href="#cb24-23" tabindex="-1"></a><span class="co">#&gt; 19   109           0.8             0 0    </span></span>
+<span id="cb24-24"><a href="#cb24-24" tabindex="-1"></a><span class="co">#&gt; 20   110           0.17            1 1.49</span></span>
+<span id="cb24-25"><a href="#cb24-25" tabindex="-1"></a>PopulationTable.AT2017.cut <span class="ot">=</span> PopulationTable.AT2017.smooth <span class="sc">%&gt;%</span></span>
+<span id="cb24-26"><a href="#cb24-26" tabindex="-1"></a>  <span class="fu">mT.fillAges</span>(<span class="dv">0</span><span class="sc">:</span><span class="dv">99</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb24-27"><a href="#cb24-27" tabindex="-1"></a>  <span class="fu">mT.setName</span>(<span class="st">&quot;Austrian Population Mortality 2017, Whittaker-smoothed and cut at age 99&quot;</span>)</span></code></pre></div>
+<p>Even though we don’t have enough statistical data to derive
+significant mortalities above 100, we still want to create a table that
+covers this age range by extrapolating the significant table to higher
+ages. This is typically done by selecting a fitting function and an
+appropriate age range, where the function is fit to the data. The
+parameters of the function calibrated to match the mortalities in the
+fitting range as good as possible are then used to extrapolate the
+mortalities with the function to ages outside the existing table.</p>
+<p>The function <code>mT.fitExtrapolationLaw</code> uses the package
+<code>MortalityLaws</code> and the function
+<code>MortalityLaws::MortalityLaw()</code> to fit one of the mortality
+laws (see <code>MortalityLaws::availableLaws()</code> for all available
+laws) to the data and use that law to extrapolate to the desired ages,
+with a potential feding-in or fading-out age range.</p>
+<p>In this example, we fit a Heligman-Pollard-type law (HP2) to the raw
+data and use it to extrapolate up to age 120. The age rante 80–95 is
+used to linearly switch from the (smoothed) death probabilities of the
+input table to the death probabilities calculated from the fitted law.
+So in this case, all observed probabilities above age 95 are not used at
+all anyway.</p>
+<div class="sourceCode" id="cb25"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" tabindex="-1"></a>PopulationTable.AT2017.ex <span class="ot">=</span> PopulationTable.AT2017.smooth <span class="sc">%&gt;%</span></span>
+<span id="cb25-2"><a href="#cb25-2" tabindex="-1"></a>  <span class="fu">mT.fitExtrapolationLaw</span>(<span class="at">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="at">fit =</span> <span class="dv">75</span><span class="sc">:</span><span class="dv">99</span>, <span class="at">extrapolate =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">120</span>, <span class="at">fadeIn =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">95</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb25-3"><a href="#cb25-3" tabindex="-1"></a>  <span class="fu">mT.setDimInfo</span>(<span class="at">type =</span> <span class="st">&quot;smoothed and extrapolated&quot;</span>)</span>
+<span id="cb25-4"><a href="#cb25-4" tabindex="-1"></a><span class="fu">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, <span class="at">title =</span> <span class="st">&quot;Austrian population mortality (raw and smoothed), 2017&quot;</span>)  <span class="sc">+</span></span>
+<span id="cb25-5"><a href="#cb25-5" tabindex="-1"></a>  <span class="fu">aes</span>(<span class="at">colour =</span> type)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
-<p>Using different laws and different fitting age ranges can result in quite different results, so be carefull when extrapolating the table and always do a sanity-check on the results!</p>
-<div class="sourceCode" id="cb26"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1"></a><span class="kw">plotMortalityTables</span>(</span>
-<span id="cb26-2"><a href="#cb26-2"></a>  PopulationTable.AT2017, </span>
-<span id="cb26-3"><a href="#cb26-3"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb26-4"><a href="#cb26-4"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb26-5"><a href="#cb26-5"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;Extrapolation: HP2, Fit 75--99&quot;</span>),</span>
-<span id="cb26-6"><a href="#cb26-6"></a>  </span>
-<span id="cb26-7"><a href="#cb26-7"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb26-8"><a href="#cb26-8"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">85</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb26-9"><a href="#cb26-9"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;Extrapolation: HP, Fit 75--85&quot;</span>),</span>
-<span id="cb26-10"><a href="#cb26-10"></a>  </span>
-<span id="cb26-11"><a href="#cb26-11"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb26-12"><a href="#cb26-12"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">90</span><span class="op">:</span><span class="dv">110</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">90</span><span class="op">:</span><span class="dv">100</span>) <span class="op">%&gt;%</span></span>
-<span id="cb26-13"><a href="#cb26-13"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;Extrapolation: HP2, Fit 90--110&quot;</span>),</span>
-<span id="cb26-14"><a href="#cb26-14"></a>  </span>
-<span id="cb26-15"><a href="#cb26-15"></a>  <span class="dt">title =</span> <span class="st">&quot;Examples of different fitting ranges for extrapolation&quot;</span>)  <span class="op">+</span></span>
-<span id="cb26-16"><a href="#cb26-16"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
+<p>Using different laws and different fitting age ranges can result in
+quite different results, so be carefull when extrapolating the table and
+always do a sanity-check on the results!</p>
+<div class="sourceCode" id="cb26"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" tabindex="-1"></a><span class="fu">plotMortalityTables</span>(</span>
+<span id="cb26-2"><a href="#cb26-2" tabindex="-1"></a>  PopulationTable.AT2017, </span>
+<span id="cb26-3"><a href="#cb26-3" tabindex="-1"></a>  PopulationTable.AT2017.smooth <span class="sc">%&gt;%</span></span>
+<span id="cb26-4"><a href="#cb26-4" tabindex="-1"></a>    <span class="fu">mT.fitExtrapolationLaw</span>(<span class="at">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="at">fit =</span> <span class="dv">75</span><span class="sc">:</span><span class="dv">99</span>, <span class="at">extrapolate =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">120</span>, <span class="at">fadeIn =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">95</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb26-5"><a href="#cb26-5" tabindex="-1"></a>    <span class="fu">mT.setDimInfo</span>(<span class="at">type =</span> <span class="st">&quot;Extrapolation: HP2, Fit 75--99&quot;</span>),</span>
+<span id="cb26-6"><a href="#cb26-6" tabindex="-1"></a>  </span>
+<span id="cb26-7"><a href="#cb26-7" tabindex="-1"></a>  PopulationTable.AT2017.smooth <span class="sc">%&gt;%</span></span>
+<span id="cb26-8"><a href="#cb26-8" tabindex="-1"></a>    <span class="fu">mT.fitExtrapolationLaw</span>(<span class="at">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="at">fit =</span> <span class="dv">75</span><span class="sc">:</span><span class="dv">85</span>, <span class="at">extrapolate =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">120</span>, <span class="at">fadeIn =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">95</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb26-9"><a href="#cb26-9" tabindex="-1"></a>    <span class="fu">mT.setDimInfo</span>(<span class="at">type =</span> <span class="st">&quot;Extrapolation: HP, Fit 75--85&quot;</span>),</span>
+<span id="cb26-10"><a href="#cb26-10" tabindex="-1"></a>  </span>
+<span id="cb26-11"><a href="#cb26-11" tabindex="-1"></a>  PopulationTable.AT2017.smooth <span class="sc">%&gt;%</span></span>
+<span id="cb26-12"><a href="#cb26-12" tabindex="-1"></a>    <span class="fu">mT.fitExtrapolationLaw</span>(<span class="at">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="at">fit =</span> <span class="dv">90</span><span class="sc">:</span><span class="dv">110</span>, <span class="at">extrapolate =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">120</span>, <span class="at">fadeIn =</span> <span class="dv">90</span><span class="sc">:</span><span class="dv">100</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb26-13"><a href="#cb26-13" tabindex="-1"></a>    <span class="fu">mT.setDimInfo</span>(<span class="at">type =</span> <span class="st">&quot;Extrapolation: HP2, Fit 90--110&quot;</span>),</span>
+<span id="cb26-14"><a href="#cb26-14" tabindex="-1"></a>  </span>
+<span id="cb26-15"><a href="#cb26-15" tabindex="-1"></a>  <span class="at">title =</span> <span class="st">&quot;Examples of different fitting ranges for extrapolation&quot;</span>)  <span class="sc">+</span></span>
+<span id="cb26-16"><a href="#cb26-16" tabindex="-1"></a>  <span class="fu">aes</span>(<span class="at">colour =</span> type)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
-<div class="sourceCode" id="cb27"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1"></a><span class="kw">plotMortalityTables</span>(</span>
-<span id="cb27-2"><a href="#cb27-2"></a>  PopulationTable.AT2017, </span>
-<span id="cb27-3"><a href="#cb27-3"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb27-4"><a href="#cb27-4"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb27-5"><a href="#cb27-5"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;HP2&quot;</span>),</span>
-<span id="cb27-6"><a href="#cb27-6"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb27-7"><a href="#cb27-7"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;thiele&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb27-8"><a href="#cb27-8"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;thiele&quot;</span>),</span>
-<span id="cb27-9"><a href="#cb27-9"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb27-10"><a href="#cb27-10"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;ggompertz&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb27-11"><a href="#cb27-11"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;ggompertz&quot;</span>),</span>
-<span id="cb27-12"><a href="#cb27-12"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb27-13"><a href="#cb27-13"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;carriere1&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb27-14"><a href="#cb27-14"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;carriere1&quot;</span>),</span>
-<span id="cb27-15"><a href="#cb27-15"></a></span>
-<span id="cb27-16"><a href="#cb27-16"></a>  <span class="dt">title =</span> <span class="st">&quot;Examples of different fitting functions for extrapolation (fit 75--99)&quot;</span>, </span>
-<span id="cb27-17"><a href="#cb27-17"></a>  <span class="dt">ages =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">legend.position =</span> <span class="st">&quot;bottom&quot;</span>, <span class="dt">legend.key.width =</span> <span class="kw">unit</span>(<span class="dv">15</span>, <span class="st">&quot;mm&quot;</span>))  <span class="op">+</span></span>
-<span id="cb27-18"><a href="#cb27-18"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type) <span class="op">+</span><span class="st"> </span><span class="kw">labs</span>(<span class="dt">colour =</span> <span class="st">&quot;Mortality Law&quot;</span>)</span></code></pre></div>
-<p><img src="" /><!-- --></p>
-<p>The Austrian population mortality table for the year 2017 derived above is a period life table describing the observed mortality only in the year 2017. To describe death probabilities for a given person, one needs to take into account the mortality improvements and project the mortality into the future from the observation year. This can be done with age-dependent yearly mortality improvements, also called mortaltity trend <span class="math inline">\(\lambda_x\)</span>.</p>
-<p>For simplicity, we will use the trend <span class="math inline">\(\lambda_x\)</span> of the medium scenario of the mortality forecast of the Statistik Austria (forecast from 2016 to roughly 2080). These forecast tables are available as the mortality table <code>mort.AT.forecast</code> for male and female separately. Even though we derived a table for unisex, we will apply the male trends for simplicity. In practice, of course you would derive proper unisex trends from the available data.</p>
-<div class="sourceCode" id="cb28"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1"></a><span class="kw">mortalityTables.load</span>(<span class="st">&quot;Austria_PopulationForecast&quot;</span>)</span>
-<span id="cb28-2"><a href="#cb28-2"></a><span class="kw">plotMortalityTrend</span>(mort.AT.forecast, <span class="dt">title =</span> <span class="st">&quot;Forecast trend (medium scenario) by Statistik Austria&quot;</span>)</span></code></pre></div>
-<p><img src="" /><!-- --> As we can see, the trends appear to be derived from data until age 94 and then set to a constant value (“floor”). Let us first apply the male trend to the observed period life table of the year 2017, and then extrapolate the trend from age 94 to higher ages by an exponential function towards zero. The first can be done with the function <code>mT.addTrend()</code>, while the second can be done with <code>mT.extrapolateTrendExp()</code>:</p>
-<div class="sourceCode" id="cb29"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1"></a>PopulationTable.AT2017.trend =<span class="st"> </span>PopulationTable.AT2017.ex <span class="op">%&gt;%</span></span>
-<span id="cb29-2"><a href="#cb29-2"></a><span class="st">  </span><span class="kw">mT.addTrend</span>(mort.AT.forecast<span class="op">$</span>m<span class="op">@</span>trend, <span class="dt">trendages =</span> <span class="kw">ages</span>(mort.AT.forecast<span class="op">$</span>m)) <span class="op">%&gt;%</span></span>
-<span id="cb29-3"><a href="#cb29-3"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed, extrapolated, trend&quot;</span>)</span>
-<span id="cb29-4"><a href="#cb29-4"></a></span>
-<span id="cb29-5"><a href="#cb29-5"></a>PopulationTable.AT2017.trend.ex =<span class="st"> </span>PopulationTable.AT2017.trend <span class="op">%&gt;%</span></span>
-<span id="cb29-6"><a href="#cb29-6"></a><span class="st">  </span><span class="kw">mT.extrapolateTrendExp</span>(<span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb29-7"><a href="#cb29-7"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed, extrapolated, trend extrapolated&quot;</span>)</span>
-<span id="cb29-8"><a href="#cb29-8"></a></span>
-<span id="cb29-9"><a href="#cb29-9"></a><span class="kw">plotMortalityTrend</span>(PopulationTable.AT2017.trend, PopulationTable.AT2017.trend.ex,</span>
-<span id="cb29-10"><a href="#cb29-10"></a>                   <span class="dt">title =</span> <span class="st">&quot;Extrapolating the trend via Exponential function&quot;</span>) <span class="op">+</span></span>
-<span id="cb29-11"><a href="#cb29-11"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">color =</span> type)</span>
-<span id="cb29-12"><a href="#cb29-12"></a><span class="co">#&gt; Warning: Removed 20 row(s) containing missing values (geom_path).</span></span></code></pre></div>
-<p><img src="" /><!-- --></p>
-<div class="sourceCode" id="cb30"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1"></a></span>
-<span id="cb30-2"><a href="#cb30-2"></a></span>
-<span id="cb30-3"><a href="#cb30-3"></a></span>
-<span id="cb30-4"><a href="#cb30-4"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, PopulationTable.AT2017.trend.ex, <span class="dt">YOB =</span> <span class="dv">1980</span>, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (Period 2017 vs. Generation 1980)&quot;</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.01</span>, <span class="fl">0.99</span>), <span class="dt">legend.justification =</span> <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">1</span>))  <span class="op">+</span></span>
-<span id="cb30-5"><a href="#cb30-5"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
+<div class="sourceCode" id="cb27"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" tabindex="-1"></a><span class="fu">plotMortalityTables</span>(</span>
+<span id="cb27-2"><a href="#cb27-2" tabindex="-1"></a>  PopulationTable.AT2017, </span>
+<span id="cb27-3"><a href="#cb27-3" tabindex="-1"></a>  PopulationTable.AT2017.smooth <span class="sc">%&gt;%</span></span>
+<span id="cb27-4"><a href="#cb27-4" tabindex="-1"></a>    <span class="fu">mT.fitExtrapolationLaw</span>(<span class="at">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="at">fit =</span> <span class="dv">75</span><span class="sc">:</span><span class="dv">99</span>, <span class="at">extrapolate =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">120</span>, <span class="at">fadeIn =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">95</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb27-5"><a href="#cb27-5" tabindex="-1"></a>    <span class="fu">mT.setDimInfo</span>(<span class="at">type =</span> <span class="st">&quot;HP2&quot;</span>),</span>
+<span id="cb27-6"><a href="#cb27-6" tabindex="-1"></a>  PopulationTable.AT2017.smooth <span class="sc">%&gt;%</span></span>
+<span id="cb27-7"><a href="#cb27-7" tabindex="-1"></a>    <span class="fu">mT.fitExtrapolationLaw</span>(<span class="at">law =</span> <span class="st">&quot;thiele&quot;</span>, <span class="at">fit =</span> <span class="dv">75</span><span class="sc">:</span><span class="dv">99</span>, <span class="at">extrapolate =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">120</span>, <span class="at">fadeIn =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">95</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb27-8"><a href="#cb27-8" tabindex="-1"></a>    <span class="fu">mT.setDimInfo</span>(<span class="at">type =</span> <span class="st">&quot;thiele&quot;</span>),</span>
+<span id="cb27-9"><a href="#cb27-9" tabindex="-1"></a>  PopulationTable.AT2017.smooth <span class="sc">%&gt;%</span></span>
+<span id="cb27-10"><a href="#cb27-10" tabindex="-1"></a>    <span class="fu">mT.fitExtrapolationLaw</span>(<span class="at">law =</span> <span class="st">&quot;ggompertz&quot;</span>, <span class="at">fit =</span> <span class="dv">75</span><span class="sc">:</span><span class="dv">99</span>, <span class="at">extrapolate =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">120</span>, <span class="at">fadeIn =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">95</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb27-11"><a href="#cb27-11" tabindex="-1"></a>    <span class="fu">mT.setDimInfo</span>(<span class="at">type =</span> <span class="st">&quot;ggompertz&quot;</span>),</span>
+<span id="cb27-12"><a href="#cb27-12" tabindex="-1"></a>  PopulationTable.AT2017.smooth <span class="sc">%&gt;%</span></span>
+<span id="cb27-13"><a href="#cb27-13" tabindex="-1"></a>    <span class="fu">mT.fitExtrapolationLaw</span>(<span class="at">law =</span> <span class="st">&quot;carriere1&quot;</span>, <span class="at">fit =</span> <span class="dv">75</span><span class="sc">:</span><span class="dv">99</span>, <span class="at">extrapolate =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">120</span>, <span class="at">fadeIn =</span> <span class="dv">80</span><span class="sc">:</span><span class="dv">95</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb27-14"><a href="#cb27-14" tabindex="-1"></a>    <span class="fu">mT.setDimInfo</span>(<span class="at">type =</span> <span class="st">&quot;carriere1&quot;</span>),</span>
+<span id="cb27-15"><a href="#cb27-15" tabindex="-1"></a></span>
+<span id="cb27-16"><a href="#cb27-16" tabindex="-1"></a>  <span class="at">title =</span> <span class="st">&quot;Examples of different fitting functions for extrapolation (fit 75--99)&quot;</span>, </span>
+<span id="cb27-17"><a href="#cb27-17" tabindex="-1"></a>  <span class="at">ages =</span> <span class="dv">75</span><span class="sc">:</span><span class="dv">120</span>, <span class="at">legend.position =</span> <span class="st">&quot;bottom&quot;</span>, <span class="at">legend.key.width =</span> <span class="fu">unit</span>(<span class="dv">15</span>, <span class="st">&quot;mm&quot;</span>))  <span class="sc">+</span></span>
+<span id="cb27-18"><a href="#cb27-18" tabindex="-1"></a>  <span class="fu">aes</span>(<span class="at">colour =</span> type) <span class="sc">+</span> <span class="fu">labs</span>(<span class="at">colour =</span> <span class="st">&quot;Mortality Law&quot;</span>)</span></code></pre></div>
+<p><img src="" /><!-- --></p>
+<p>The Austrian population mortality table for the year 2017 derived
+above is a period life table describing the observed mortality only in
+the year 2017. To describe death probabilities for a given person, one
+needs to take into account the mortality improvements and project the
+mortality into the future from the observation year. This can be done
+with age-dependent yearly mortality improvements, also called mortaltity
+trend <span class="math inline">\(\lambda_x\)</span>.</p>
+<p>For simplicity, we will use the trend <span class="math inline">\(\lambda_x\)</span> of the medium scenario of the
+mortality forecast of the Statistik Austria (forecast from 2016 to
+roughly 2080). These forecast tables are available as the mortality
+table <code>mort.AT.forecast</code> for male and female separately. Even
+though we derived a table for unisex, we will apply the male trends for
+simplicity. In practice, of course you would derive proper unisex trends
+from the available data.</p>
+<div class="sourceCode" id="cb28"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1" tabindex="-1"></a><span class="fu">mortalityTables.load</span>(<span class="st">&quot;Austria_PopulationForecast&quot;</span>)</span>
+<span id="cb28-2"><a href="#cb28-2" tabindex="-1"></a><span class="fu">plotMortalityTrend</span>(mort.AT.forecast, <span class="at">title =</span> <span class="st">&quot;Forecast trend (medium scenario) by Statistik Austria&quot;</span>)</span></code></pre></div>
+<p><img src="" /><!-- -->
+As we can see, the trends appear to be derived from data until age 94
+and then set to a constant value (“floor”). Let us first apply the male
+trend to the observed period life table of the year 2017, and then
+extrapolate the trend from age 94 to higher ages by an exponential
+function towards zero. The first can be done with the function
+<code>mT.addTrend()</code>, while the second can be done with
+<code>mT.extrapolateTrendExp()</code>:</p>
+<div class="sourceCode" id="cb29"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" tabindex="-1"></a>PopulationTable.AT2017.trend <span class="ot">=</span> PopulationTable.AT2017.ex <span class="sc">%&gt;%</span></span>
+<span id="cb29-2"><a href="#cb29-2" tabindex="-1"></a>  <span class="fu">mT.addTrend</span>(mort.AT.forecast<span class="sc">$</span>m<span class="sc">@</span>trend, <span class="at">trendages =</span> <span class="fu">ages</span>(mort.AT.forecast<span class="sc">$</span>m)) <span class="sc">%&gt;%</span></span>
+<span id="cb29-3"><a href="#cb29-3" tabindex="-1"></a>  <span class="fu">mT.setDimInfo</span>(<span class="at">type =</span> <span class="st">&quot;smoothed, extrapolated, trend&quot;</span>)</span>
+<span id="cb29-4"><a href="#cb29-4" tabindex="-1"></a></span>
+<span id="cb29-5"><a href="#cb29-5" tabindex="-1"></a>PopulationTable.AT2017.trend.ex <span class="ot">=</span> PopulationTable.AT2017.trend <span class="sc">%&gt;%</span></span>
+<span id="cb29-6"><a href="#cb29-6" tabindex="-1"></a>  <span class="fu">mT.extrapolateTrendExp</span>(<span class="dv">95</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb29-7"><a href="#cb29-7" tabindex="-1"></a>  <span class="fu">mT.setDimInfo</span>(<span class="at">type =</span> <span class="st">&quot;smoothed, extrapolated, trend extrapolated&quot;</span>)</span>
+<span id="cb29-8"><a href="#cb29-8" tabindex="-1"></a></span>
+<span id="cb29-9"><a href="#cb29-9" tabindex="-1"></a><span class="fu">plotMortalityTrend</span>(PopulationTable.AT2017.trend, PopulationTable.AT2017.trend.ex,</span>
+<span id="cb29-10"><a href="#cb29-10" tabindex="-1"></a>                   <span class="at">title =</span> <span class="st">&quot;Extrapolating the trend via Exponential function&quot;</span>) <span class="sc">+</span></span>
+<span id="cb29-11"><a href="#cb29-11" tabindex="-1"></a>  <span class="fu">aes</span>(<span class="at">color =</span> type)</span>
+<span id="cb29-12"><a href="#cb29-12" tabindex="-1"></a><span class="co">#&gt; Warning: Removed 20 rows containing missing values (`geom_line()`).</span></span></code></pre></div>
+<p><img src="" /><!-- --></p>
+<div class="sourceCode" id="cb30"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" tabindex="-1"></a></span>
+<span id="cb30-2"><a href="#cb30-2" tabindex="-1"></a></span>
+<span id="cb30-3"><a href="#cb30-3" tabindex="-1"></a></span>
+<span id="cb30-4"><a href="#cb30-4" tabindex="-1"></a><span class="fu">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, PopulationTable.AT2017.trend.ex, <span class="at">YOB =</span> <span class="dv">1980</span>, <span class="at">title =</span> <span class="st">&quot;Austrian population mortality (Period 2017 vs. Generation 1980)&quot;</span>, <span class="at">legend.position =</span> <span class="fu">c</span>(<span class="fl">0.01</span>, <span class="fl">0.99</span>), <span class="at">legend.justification =</span> <span class="fu">c</span>(<span class="dv">0</span>,<span class="dv">1</span>))  <span class="sc">+</span></span>
+<span id="cb30-5"><a href="#cb30-5" tabindex="-1"></a>  <span class="fu">aes</span>(<span class="at">colour =</span> type)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
-<p>So we have now started from raw data, calculated the death probabilities, smoothed them using Whittaker-Henderson, extrapolated to very old ages and added a trend to create a nice Cohort Life Table. We could now store the <code>PopulationTable.AT2017.trend.ex</code> in an .RData file and distribute it to the public. However, we might miss that all our modification were also recorded inside the mortality table (to allow later introspection into what was done and what was the result). For a published table, this might not be desired, so we first need to clean this additional support data with the <code>mT.cleanup()</code> function, which does not modify the table itself, but only removes all non-essential supporting information from the table:</p>
-<div class="sourceCode" id="cb31"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb31-1"><a href="#cb31-1"></a><span class="co"># Lots of non-essential or support information is stored inside the table&#39;s data field:</span></span>
-<span id="cb31-2"><a href="#cb31-2"></a>PopulationTable.AT2017.trend.ex<span class="op">@</span>data<span class="op">$</span>whittaker</span>
-<span id="cb31-3"><a href="#cb31-3"></a><span class="co">#&gt; $weights</span></span>
-<span id="cb31-4"><a href="#cb31-4"></a><span class="co">#&gt;   [1] 9.902640e-03 9.906213e-03 9.790593e-03 9.633836e-03 9.526789e-03</span></span>
-<span id="cb31-5"><a href="#cb31-5"></a><span class="co">#&gt;   [6] 9.507835e-03 9.578069e-03 9.441193e-03 9.378177e-03 9.433871e-03</span></span>
-<span id="cb31-6"><a href="#cb31-6"></a><span class="co">#&gt;  [11] 9.457978e-03 9.565714e-03 9.682226e-03 9.623760e-03 9.729914e-03</span></span>
-<span id="cb31-7"><a href="#cb31-7"></a><span class="co">#&gt;  [16] 9.716248e-03 9.834353e-03 1.011500e-02 1.041901e-02 1.099756e-02</span></span>
-<span id="cb31-8"><a href="#cb31-8"></a><span class="co">#&gt;  [21] 1.181051e-02 1.201924e-02 1.235036e-02 1.289431e-02 1.336379e-02</span></span>
-<span id="cb31-9"><a href="#cb31-9"></a><span class="co">#&gt;  [26] 1.359387e-02 1.372999e-02 1.362733e-02 1.371012e-02 1.366066e-02</span></span>
-<span id="cb31-10"><a href="#cb31-10"></a><span class="co">#&gt;  [31] 1.345438e-02 1.351974e-02 1.364485e-02 1.359768e-02 1.379285e-02</span></span>
-<span id="cb31-11"><a href="#cb31-11"></a><span class="co">#&gt;  [36] 1.393752e-02 1.375612e-02 1.301095e-02 1.271099e-02 1.250115e-02</span></span>
-<span id="cb31-12"><a href="#cb31-12"></a><span class="co">#&gt;  [41] 1.247615e-02 1.276387e-02 1.328318e-02 1.331546e-02 1.369437e-02</span></span>
-<span id="cb31-13"><a href="#cb31-13"></a><span class="co">#&gt;  [46] 1.431341e-02 1.474252e-02 1.535602e-02 1.610024e-02 1.627307e-02</span></span>
-<span id="cb31-14"><a href="#cb31-14"></a><span class="co">#&gt;  [51] 1.624561e-02 1.614926e-02 1.640552e-02 1.622923e-02 1.614036e-02</span></span>
-<span id="cb31-15"><a href="#cb31-15"></a><span class="co">#&gt;  [56] 1.559669e-02 1.497483e-02 1.440294e-02 1.380555e-02 1.326929e-02</span></span>
-<span id="cb31-16"><a href="#cb31-16"></a><span class="co">#&gt;  [61] 1.297614e-02 1.235557e-02 1.150436e-02 1.096556e-02 1.067262e-02</span></span>
-<span id="cb31-17"><a href="#cb31-17"></a><span class="co">#&gt;  [66] 1.024972e-02 1.007565e-02 1.007801e-02 1.041158e-02 1.033101e-02</span></span>
-<span id="cb31-18"><a href="#cb31-18"></a><span class="co">#&gt;  [71] 9.974142e-03 7.170591e-03 8.164682e-03 8.929619e-03 8.506759e-03</span></span>
-<span id="cb31-19"><a href="#cb31-19"></a><span class="co">#&gt;  [76] 9.195433e-03 9.656996e-03 1.012315e-02 7.949747e-03 5.845014e-03</span></span>
-<span id="cb31-20"><a href="#cb31-20"></a><span class="co">#&gt;  [81] 5.360872e-03 5.043744e-03 4.724615e-03 4.477298e-03 4.308243e-03</span></span>
-<span id="cb31-21"><a href="#cb31-21"></a><span class="co">#&gt;  [86] 3.996696e-03 3.728356e-03 3.335648e-03 2.879870e-03 2.421901e-03</span></span>
-<span id="cb31-22"><a href="#cb31-22"></a><span class="co">#&gt;  [91] 2.071341e-03 1.775088e-03 1.462955e-03 1.164619e-03 9.120986e-04</span></span>
-<span id="cb31-23"><a href="#cb31-23"></a><span class="co">#&gt;  [96] 6.678433e-04 4.593908e-04 2.819566e-04 1.294273e-04 6.713604e-05</span></span>
-<span id="cb31-24"><a href="#cb31-24"></a><span class="co">#&gt; [101] 4.608583e-05 2.945073e-05 2.359083e-05 1.503001e-05 8.048140e-06</span></span>
-<span id="cb31-25"><a href="#cb31-25"></a><span class="co">#&gt; [106] 4.288931e-06 1.918822e-06 7.934465e-07 3.830824e-07 0.000000e+00</span></span>
-<span id="cb31-26"><a href="#cb31-26"></a><span class="co">#&gt; [111] 1.932463e-08</span></span>
-<span id="cb31-27"><a href="#cb31-27"></a></span>
-<span id="cb31-28"><a href="#cb31-28"></a><span class="co"># Clean up the table (remove all non-essential data, but do not modify results)</span></span>
-<span id="cb31-29"><a href="#cb31-29"></a>PopulationTable.AT2017.Cohort.FINAL =<span class="st"> </span>PopulationTable.AT2017.trend.ex <span class="op">%&gt;%</span></span>
-<span id="cb31-30"><a href="#cb31-30"></a><span class="st">  </span><span class="kw">mT.cleanup</span>() <span class="op">%&gt;%</span></span>
-<span id="cb31-31"><a href="#cb31-31"></a><span class="st">  </span><span class="kw">mT.round</span>(<span class="dt">digits =</span> <span class="dv">6</span>) <span class="op">%&gt;%</span></span>
-<span id="cb31-32"><a href="#cb31-32"></a><span class="st">  </span><span class="kw">mT.setName</span>(<span class="st">&quot;Austrian Population Mortality, Period 2017 with trend projection&quot;</span>)</span></code></pre></div>
-<p>Other functions that might be useful before publishing a table are: * <code>mT.translate()</code>, which simply moves the base year of the internal representation of a cohort life table to a different year (by applying the trend according to the translation), but leaves cohort death probabilities unchanged. * <code>mT.round()</code>, which rounds the probabilities of the base table and the trend to the given number of digits.</p>
-<p>When using a population mortality table like the one we just derived in insurance contracts, the actuary often considers adding a certain security loading (e.g. 25% on all death probabilities) to ensure sufficient security and ensure the legal requirement of a prudent person. This can be done with the function <code>mT.scaleProbs()</code>:</p>
-<div class="sourceCode" id="cb32"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb32-1"><a href="#cb32-1"></a>TableForProduct =<span class="st"> </span>PopulationTable.AT2017.Cohort.FINAL <span class="op">%&gt;%</span></span>
-<span id="cb32-2"><a href="#cb32-2"></a><span class="st">  </span><span class="kw">mT.scaleProbs</span>(<span class="dt">factor =</span> <span class="fl">1.25</span>, <span class="dt">name.postfix =</span> <span class="st">&quot;10% security added&quot;</span>)</span>
-<span id="cb32-3"><a href="#cb32-3"></a></span>
-<span id="cb32-4"><a href="#cb32-4"></a><span class="kw">plotMortalityTables</span>(TableForProduct, PopulationTable.AT2017.Cohort.FINAL, </span>
-<span id="cb32-5"><a href="#cb32-5"></a>                    <span class="dt">title =</span> <span class="st">&quot;Adding a security loading of 25%&quot;</span>, <span class="dt">Period =</span> <span class="dv">2017</span>, <span class="dt">legend.position =</span> <span class="st">&quot;bottom&quot;</span>)</span></code></pre></div>
-<p><img src="" /><!-- --></p>
+<p>So we have now started from raw data, calculated the death
+probabilities, smoothed them using Whittaker-Henderson, extrapolated to
+very old ages and added a trend to create a nice Cohort Life Table. We
+could now store the <code>PopulationTable.AT2017.trend.ex</code> in an
+.RData file and distribute it to the public. However, we might miss that
+all our modification were also recorded inside the mortality table (to
+allow later introspection into what was done and what was the result).
+For a published table, this might not be desired, so we first need to
+clean this additional support data with the <code>mT.cleanup()</code>
+function, which does not modify the table itself, but only removes all
+non-essential supporting information from the table:</p>
+<div class="sourceCode" id="cb31"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb31-1"><a href="#cb31-1" tabindex="-1"></a><span class="co"># Lots of non-essential or support information is stored inside the table&#39;s data field:</span></span>
+<span id="cb31-2"><a href="#cb31-2" tabindex="-1"></a>PopulationTable.AT2017.trend.ex<span class="sc">@</span>data<span class="sc">$</span>whittaker</span>
+<span id="cb31-3"><a href="#cb31-3" tabindex="-1"></a><span class="co">#&gt; $weights</span></span>
+<span id="cb31-4"><a href="#cb31-4" tabindex="-1"></a><span class="co">#&gt;   [1] 9.902640e-03 9.906213e-03 9.790593e-03 9.633836e-03 9.526789e-03</span></span>
+<span id="cb31-5"><a href="#cb31-5" tabindex="-1"></a><span class="co">#&gt;   [6] 9.507835e-03 9.578069e-03 9.441193e-03 9.378177e-03 9.433871e-03</span></span>
+<span id="cb31-6"><a href="#cb31-6" tabindex="-1"></a><span class="co">#&gt;  [11] 9.457978e-03 9.565714e-03 9.682226e-03 9.623760e-03 9.729914e-03</span></span>
+<span id="cb31-7"><a href="#cb31-7" tabindex="-1"></a><span class="co">#&gt;  [16] 9.716248e-03 9.834353e-03 1.011500e-02 1.041901e-02 1.099756e-02</span></span>
+<span id="cb31-8"><a href="#cb31-8" tabindex="-1"></a><span class="co">#&gt;  [21] 1.181051e-02 1.201924e-02 1.235036e-02 1.289431e-02 1.336379e-02</span></span>
+<span id="cb31-9"><a href="#cb31-9" tabindex="-1"></a><span class="co">#&gt;  [26] 1.359387e-02 1.372999e-02 1.362733e-02 1.371012e-02 1.366066e-02</span></span>
+<span id="cb31-10"><a href="#cb31-10" tabindex="-1"></a><span class="co">#&gt;  [31] 1.345438e-02 1.351974e-02 1.364485e-02 1.359768e-02 1.379285e-02</span></span>
+<span id="cb31-11"><a href="#cb31-11" tabindex="-1"></a><span class="co">#&gt;  [36] 1.393752e-02 1.375612e-02 1.301095e-02 1.271099e-02 1.250115e-02</span></span>
+<span id="cb31-12"><a href="#cb31-12" tabindex="-1"></a><span class="co">#&gt;  [41] 1.247615e-02 1.276387e-02 1.328318e-02 1.331546e-02 1.369437e-02</span></span>
+<span id="cb31-13"><a href="#cb31-13" tabindex="-1"></a><span class="co">#&gt;  [46] 1.431341e-02 1.474252e-02 1.535602e-02 1.610024e-02 1.627307e-02</span></span>
+<span id="cb31-14"><a href="#cb31-14" tabindex="-1"></a><span class="co">#&gt;  [51] 1.624561e-02 1.614926e-02 1.640552e-02 1.622923e-02 1.614036e-02</span></span>
+<span id="cb31-15"><a href="#cb31-15" tabindex="-1"></a><span class="co">#&gt;  [56] 1.559669e-02 1.497483e-02 1.440294e-02 1.380555e-02 1.326929e-02</span></span>
+<span id="cb31-16"><a href="#cb31-16" tabindex="-1"></a><span class="co">#&gt;  [61] 1.297614e-02 1.235557e-02 1.150436e-02 1.096556e-02 1.067262e-02</span></span>
+<span id="cb31-17"><a href="#cb31-17" tabindex="-1"></a><span class="co">#&gt;  [66] 1.024972e-02 1.007565e-02 1.007801e-02 1.041158e-02 1.033101e-02</span></span>
+<span id="cb31-18"><a href="#cb31-18" tabindex="-1"></a><span class="co">#&gt;  [71] 9.974142e-03 7.170591e-03 8.164682e-03 8.929619e-03 8.506759e-03</span></span>
+<span id="cb31-19"><a href="#cb31-19" tabindex="-1"></a><span class="co">#&gt;  [76] 9.195433e-03 9.656996e-03 1.012315e-02 7.949747e-03 5.845014e-03</span></span>
+<span id="cb31-20"><a href="#cb31-20" tabindex="-1"></a><span class="co">#&gt;  [81] 5.360872e-03 5.043744e-03 4.724615e-03 4.477298e-03 4.308243e-03</span></span>
+<span id="cb31-21"><a href="#cb31-21" tabindex="-1"></a><span class="co">#&gt;  [86] 3.996696e-03 3.728356e-03 3.335648e-03 2.879870e-03 2.421901e-03</span></span>
+<span id="cb31-22"><a href="#cb31-22" tabindex="-1"></a><span class="co">#&gt;  [91] 2.071341e-03 1.775088e-03 1.462955e-03 1.164619e-03 9.120986e-04</span></span>
+<span id="cb31-23"><a href="#cb31-23" tabindex="-1"></a><span class="co">#&gt;  [96] 6.678433e-04 4.593908e-04 2.819566e-04 1.294273e-04 6.713604e-05</span></span>
+<span id="cb31-24"><a href="#cb31-24" tabindex="-1"></a><span class="co">#&gt; [101] 4.608583e-05 2.945073e-05 2.359083e-05 1.503001e-05 8.048140e-06</span></span>
+<span id="cb31-25"><a href="#cb31-25" tabindex="-1"></a><span class="co">#&gt; [106] 4.288931e-06 1.918822e-06 7.934465e-07 3.830824e-07 0.000000e+00</span></span>
+<span id="cb31-26"><a href="#cb31-26" tabindex="-1"></a><span class="co">#&gt; [111] 1.932463e-08</span></span>
+<span id="cb31-27"><a href="#cb31-27" tabindex="-1"></a></span>
+<span id="cb31-28"><a href="#cb31-28" tabindex="-1"></a><span class="co"># Clean up the table (remove all non-essential data, but do not modify results)</span></span>
+<span id="cb31-29"><a href="#cb31-29" tabindex="-1"></a>PopulationTable.AT2017.Cohort.FINAL <span class="ot">=</span> PopulationTable.AT2017.trend.ex <span class="sc">%&gt;%</span></span>
+<span id="cb31-30"><a href="#cb31-30" tabindex="-1"></a>  <span class="fu">mT.cleanup</span>() <span class="sc">%&gt;%</span></span>
+<span id="cb31-31"><a href="#cb31-31" tabindex="-1"></a>  <span class="fu">mT.round</span>(<span class="at">digits =</span> <span class="dv">6</span>) <span class="sc">%&gt;%</span></span>
+<span id="cb31-32"><a href="#cb31-32" tabindex="-1"></a>  <span class="fu">mT.setName</span>(<span class="st">&quot;Austrian Population Mortality, Period 2017 with trend projection&quot;</span>)</span></code></pre></div>
+<p>Other functions that might be useful before publishing a table are: *
+<code>mT.translate()</code>, which simply moves the base year of the
+internal representation of a cohort life table to a different year (by
+applying the trend according to the translation), but leaves cohort
+death probabilities unchanged. * <code>mT.round()</code>, which rounds
+the probabilities of the base table and the trend to the given number of
+digits.</p>
+<p>When using a population mortality table like the one we just derived
+in insurance contracts, the actuary often considers adding a certain
+security loading (e.g. 25% on all death probabilities) to ensure
+sufficient security and ensure the legal requirement of a prudent
+person. This can be done with the function
+<code>mT.scaleProbs()</code>:</p>
+<div class="sourceCode" id="cb32"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb32-1"><a href="#cb32-1" tabindex="-1"></a>TableForProduct <span class="ot">=</span> PopulationTable.AT2017.Cohort.FINAL <span class="sc">%&gt;%</span></span>
+<span id="cb32-2"><a href="#cb32-2" tabindex="-1"></a>  <span class="fu">mT.scaleProbs</span>(<span class="at">factor =</span> <span class="fl">1.25</span>, <span class="at">name.postfix =</span> <span class="st">&quot;10% security added&quot;</span>)</span>
+<span id="cb32-3"><a href="#cb32-3" tabindex="-1"></a></span>
+<span id="cb32-4"><a href="#cb32-4" tabindex="-1"></a><span class="fu">plotMortalityTables</span>(TableForProduct, PopulationTable.AT2017.Cohort.FINAL, </span>
+<span id="cb32-5"><a href="#cb32-5" tabindex="-1"></a>                    <span class="at">title =</span> <span class="st">&quot;Adding a security loading of 25%&quot;</span>, <span class="at">Period =</span> <span class="dv">2017</span>, <span class="at">legend.position =</span> <span class="st">&quot;bottom&quot;</span>)</span></code></pre></div>
+<p><img src="" /><!-- --></p>
 </div>
-<div id="pension-tables" class="section level1">
+<div id="pension-tables" class="section level1" number="8">
 <h1><span class="header-section-number">8</span> Pension Tables</h1>
-<p>Pension tables generalize mortality tables in that the state space is increased from two states (alive / dead) to four states (active / invalidity or realy retirement / old age retirement / dead). As a consequence, there is no longer just one transition probability, but multiple.</p>
+<p>Pension tables generalize mortality tables in that the state space is
+increased from two states (alive / dead) to four states (active /
+invalidity or realy retirement / old age retirement / dead). As a
+consequence, there is no longer just one transition probability, but
+multiple.</p>
 <p>Possible states are:</p>
 <ul>
-<li>active: healty, no pension, typically paying some kind of premium</li>
-<li>incapacity: disablity pension (in most cases permanent), not working, early pension</li>
+<li>active: healty, no pension, typically paying some kind of
+premium</li>
+<li>incapacity: disablity pension (in most cases permanent), not
+working, early pension</li>
 <li>retirement: old age pension, usually starting with a fixed age</li>
 <li>dead
 <ul>
 <li>Widow/widower pension (if a widow exists at the time of death)</li>
 </ul></li>
 </ul>
-<p>Correspondingly, the <code>pensionTable</code> class offers the following slots describing transition probabilities for the corresponding state transitions (by a <code>mortalityTable</code>-derived object):</p>
+<p>Correspondingly, the <code>pensionTable</code> class offers the
+following slots describing transition probabilities for the
+corresponding state transitions (by a
+<code>mortalityTable</code>-derived object):</p>
 <ul>
 <li><dl>
 <dt><code>qx</code></dt>
-<dd>death probability of actives (active -&gt; dead)}
+<dd>
+death probability of actives (active -&gt; dead)}
 </dd>
 </dl></li>
 <li><dl>
 <dt><code>ix</code></dt>
-<dd>invalidity probability (active -&gt; incapacity)}
+<dd>
+invalidity probability (active -&gt; incapacity)}
 </dd>
 </dl></li>
 <li><dl>
 <dt><code>qix</code></dt>
-<dd>death probability of invalid (invalid -&gt; dead)}
+<dd>
+death probability of invalid (invalid -&gt; dead)}
 </dd>
 </dl></li>
 <li><dl>
 <dt><code>rx</code></dt>
-<dd>reactivation probability (incapacity -&gt; active)}
+<dd>
+reactivation probability (incapacity -&gt; active)}
 </dd>
 </dl></li>
 <li><dl>
 <dt><code>apx</code></dt>
-<dd>retirement probability (active -&gt; retirement), typically 1 for a fixed age}
+<dd>
+retirement probability (active -&gt; retirement), typically 1 for a
+fixed age}
 </dd>
 </dl></li>
 <li><dl>
 <dt><code>qpx</code></dt>
-<dd>death probability of retired (retired -&gt; dead)}
+<dd>
+death probability of retired (retired -&gt; dead)}
 </dd>
 </dl></li>
 <li><dl>
 <dt><code>hx</code></dt>
-<dd>probability of a widow at moment of death (dead -&gt; widow), y(x) age differene}
+<dd>
+probability of a widow at moment of death (dead -&gt; widow), y(x) age
+differene}
 </dd>
 </dl></li>
 <li><dl>
 <dt><code>qxw</code></dt>
-<dd>death probability of widows/widowers}
+<dd>
+death probability of widows/widowers}
 </dd>
 </dl></li>
 <li><dl>
 <dt><code>yx</code></dt>
-<dd>age difference of widow(er) at moment of death}
+<dd>
+age difference of widow(er) at moment of death}
 </dd>
 </dl></li>
 <li><dl>
 <dt><code>qgx</code></dt>
-<dd>death probability of total group (irrespective of state)}
+<dd>
+death probability of total group (irrespective of state)}
 </dd>
 </dl></li>
 </ul>
-<p>All functions that handle <code>mortalityTable</code> object can be used with these slots.</p>
-<p>Additionally, the following functions are provided to obtain the set of all transition probabilities in one data frame:</p>
+<p>All functions that handle <code>mortalityTable</code> object can be
+used with these slots.</p>
+<p>Additionally, the following functions are provided to obtain the set
+of all transition probabilities in one data frame:</p>
 <ul>
 <li><code>transitionProbabilities(pension_table, YOB)</code></li>
 <li><code>periodTransitionProbabilities(pension_table, Period)</code></li>