diff --git a/data-raw/DimensionalInformation_Overview.xlsx b/data-raw/DimensionalInformation_Overview.xlsx
new file mode 100644
index 0000000000000000000000000000000000000000..beb27ea8dc6323b7e44fc902fe2f7e77e3b37922
Binary files /dev/null and b/data-raw/DimensionalInformation_Overview.xlsx differ
diff --git a/vignettes/using-the-mortalityTables-package.R b/vignettes/using-the-mortalityTables-package.R
index ba459c873213aa0892f9c715025ca33ed5402efb..fba8fafef05ce2ad757356b73140e2a017f0d7cb 100644
--- a/vignettes/using-the-mortalityTables-package.R
+++ b/vignettes/using-the-mortalityTables-package.R
@@ -57,6 +57,14 @@ table.per2020 = getPeriodTable(AVOe2005R.male, Period = 2020)
 plot(table.coh1977, table.per2020, title = "Comparison of cohort 1977 with Period 2020", legend.position = c(1,0))
 
 
+## ----DimensionalInfoPlot------------------------------------------------------
+plotMortalityTables(
+  mort.AT.census[c("m", "w"), c("1951", "1991", "2001", "2011")]) + 
+  aes(color = as.factor(year), linetype = sex) + labs(color = "Period", linetype = "Sex")
+
+## ----DimensionalInformationStorage--------------------------------------------
+mort.AT.census.2011.male@data$dim
+
 ## -----------------------------------------------------------------------------
 lt = mortalityTable.period(name = "Sample period lifetable", ages = 1:99, deathProbs = exp(-(99:1)/10))
 plot(lt, title = "Simple log-linear period mortality table")
@@ -104,7 +112,7 @@ atPlus2.damp2 = mortalityTable.trendProjection(
     }
 )
 
-plot(mort.AT.census.2011.male, atPlus2, atPlus2.damp, atPlus2.damp2, YOB = 2011, legend.position = c(0.8,0.75))
+plot(mort.AT.census.2011.male, atPlus2, atPlus2.damp, atPlus2.damp2, YOB = 2011, legend.position = c(0.02, 0.98), legend.justification = c(0, 1))
 
 ## -----------------------------------------------------------------------------
 baseTableShift = getCohortTable(atPlus2, YOB = 2011);
diff --git a/vignettes/using-the-mortalityTables-package.Rmd b/vignettes/using-the-mortalityTables-package.Rmd
index 0bafc81a7ae83c99435f7cf78cd15a48555f12db..711a9049b3c1cbdfa9cd141d084af9c6d3f6f7ca 100644
--- a/vignettes/using-the-mortalityTables-package.Rmd
+++ b/vignettes/using-the-mortalityTables-package.Rmd
@@ -8,6 +8,7 @@ output:
         toc_depth: 3
         fig_width: 7
         fig_height: 5
+        number_sections: true
 vignette: >
   %\VignetteIndexEntry{Using the MortalityTables Package}
   %\VignetteEngine{knitr::rmarkdown}
@@ -27,7 +28,7 @@ multiple life tables either directly using the absolute mortalities in
 log-linear plots or using relative mortalities as percentages of a given
 reference table.
 
-## Types of Life Tables
+# Types of Life Tables
 
 Provided types of mortality tables are:
 
@@ -67,12 +68,12 @@ Provided types of mortality tables are:
     : Transition probabilities for a four-state pension model (active, invalid, 
       retirement and death, with a possible widow in the event of death).
 
-## Loading the MortalityTables package
+# Loading the MortalityTables package
 ```{r message=FALSE}
 library("MortalityTables")
 ```
 
-## Provided Data Sets
+# Provided Data Sets
 
 The package provides several real-life life tables published by census bureaus 
 and actuarial associations around the world. You can use the function 
@@ -101,9 +102,9 @@ In the next few sections we will always use some of the provided life tables
 for demonstration purposes. 
 
 
-## Working with life table objects
+# Working with life table objects
 
-### Plotting life tables
+## Plotting life tables
 
 The package provides several functions to plot lifetables:
 
@@ -145,7 +146,7 @@ plot(AVOe1996R.male, AVOe2005R.male, Period = 2020, title = "Comparison for obse
 
 ```
 
-### Obtaining period and cohort death probabilities
+## Obtaining period and cohort death probabilities
 
 To obtain death probabilities from all the different types of tables, there are two functions:
     
@@ -192,7 +193,7 @@ death probabilities for the cohort life table.
 
 
 
-### Other data extraction functions from life tables
+## Other data extraction functions from life tables
 
 | function               | description |
 |:---------------------- |:---------------------------------------------------|
@@ -204,12 +205,49 @@ death probabilities for the cohort life table.
 |`lifetable(table, YOB)`  | Returns the cohort death probabilities as a `lifetable` object for use with the lifecontingencies package|
 
 
+## Dimensional information
+
+Mortality tables are always created for special purposes, particular collectives, 
+types of risk, sex, year, etc. So, each [MortalityTable] object provides for a list
+of such factors that describe the underlying target of the mortality table
+and that can be used e.g. when plotting mortality Tables (just like any other 
+factor variable in a ggplot):
+
+```{r DimensionalInfoPlot}
+plotMortalityTables(
+  mort.AT.census[c("m", "w"), c("1951", "1991", "2001", "2011")]) + 
+  aes(color = as.factor(year), linetype = sex) + labs(color = "Period", linetype = "Sex")
+```
+
+The dimensional information is stored inside the \code{@data$dim} field of the MortalityTable:
+```{r DimensionalInformationStorage}
+mort.AT.census.2011.male@data$dim
+```
+
+There are no hard and enforced rules for these names and the potential values 
+of the dimensional information. There are, however, some conventions that are
+obeyed by most of the tables provided by this package:
+
+| Key   | Potential values | Description |
+|:------|:-----------------|:------------|
+| sex   | "m", "w", "u"    | Sex         |
+| collar | "Rententafel", "Gruppenrententafel", "Einzel", "Gruppe", "Gesamtbevölkerung", "Raucher", "Nichtraucher", "Arbeiter", "Angestellte", "Mischtafel" | Collective, to which the mortality table applies |
+| type  | "Rententafel", "Volkssterbetafel", "Pensionstafel", "Bevölkerungsprognose", "Beobachtung", "Risikotafel" | The type of table | 
+| data  | "official", "raw", "loaded", "loaded, group", "unloaded", "age-shifted", "geglättet" | The type of data | 
+| year  | numeric year, "2014-2080", "1980-2017", "1947-2017" | The year (or range) described by the table |
+| tablename | "AVÖ 1996-R", "AVÖ 2005-R", "EROM 85", "EROF 85", "EROM G1950", "EROF G1950", "EROM G1950 AV", "EROF G1950 AV", "RR67", "DAV 1994R", "DAV 2004R", "DAV 1994T", "DAV 2008T", "1971 IAM", "1971 IAM projected", "1983a", "1983 GAM", "1994 GAM", "1994 GAR", "2012 IAM", "Annuity 2000", "AVÖ 1999-P", "AVÖ 2008-P", "Ettl-Pagler 1989", "DAV 2005-G" | The formal name of the table | 
+| risk | "Tod", "sonst. Ausscheiden", "Invalidisierung", "Partnerwahrscheinlichkeit im Tod", "mittl. Hinterbliebenenalter" | The type of risk described by the table |
+| probability | "qx", "sx", "ix", "qgx", "qix", "qpx", "hx", "qwy", "yx" | The probability described by the table (corresponds with "risk") |
+| country | "Österreich", "Deutschland", "USA", ... | The geographic region of the table (not neccessarily only countries) |
+| source | "AVÖ", "Statistik Austria", "DAV", ... | Source of the data / table |
+
+Some of the provided datasets (mortality tables) have not yet fully implemented these conventions, so pleasy be vary when using them.
 
 
 
-## Creating a life table object
+# Creating a life table object
 
-### Period life tables
+## Period life tables
 Period death probabilities are the simplest type of life table, giving the 
 probabilities of death observed during the
 corresponding year (the "period"). The death probabilities of different ages
@@ -230,7 +268,7 @@ deathProbabilities(lt)
 <!-- TODO -->
 
 
-### Cohort life tables with trend projection
+## Cohort life tables with trend projection
 
 A cohort life table with trend projection needs the following parameters:
 
@@ -306,10 +344,10 @@ atPlus2.damp2 = mortalityTable.trendProjection(
     }
 )
 
-plot(mort.AT.census.2011.male, atPlus2, atPlus2.damp, atPlus2.damp2, YOB = 2011, legend.position = c(0.8,0.75))
+plot(mort.AT.census.2011.male, atPlus2, atPlus2.damp, atPlus2.damp2, YOB = 2011, legend.position = c(0.02, 0.98), legend.justification = c(0, 1))
 ```
 
-### Cohort life tables with age-shift
+## Cohort life tables with age-shift
 
 Age-shifted cohort life tables are an approximation to full cohort life tables.
 Full cohort life tables apply a trend or improvment factors to the death 
@@ -371,9 +409,9 @@ really be used with extreme care!
 
 
 
-## Modifying life table objects
+# Modifying life table objects
 
-### Copying life tables
+## Copying life tables
 
 Life tables are simple pass-by-value S4 objects, so copying works by simple assignment. 
 
@@ -385,7 +423,7 @@ b@modification = function(qx) pmax(qx, 0.01)
 plot(AVOe2005R.female, b, YOB = 2000)
 ```
 
-### Adding a security loading to the raw probabilities
+## Adding a security loading to the raw probabilities
 
 When calculating premiums for life insurance contracts, one often needs to add 
 a certain security loading on the raw death probabilities (e.g. 10% increased
@@ -400,7 +438,7 @@ AVOe2005R.female.sec@name = "Table with 10% loading"
 plot(AVOe2005R.female, AVOe2005R.female.sec, title = "Original and modified table")
 ```
 
-### Adding a modification to the raw probabilities
+## Adding a modification to the raw probabilities
 
 Some uses require post-processing of the death probabilities, like adding a lower
 bound for the death probabilities. To achive this, all `mortalityTable`-derived 
@@ -414,7 +452,7 @@ AVOe2005R.female.mod@name = "Modified table (lower bound of 3%)"
 plot(AVOe2005R.female, AVOe2005R.female.mod, title = "Original and modified table")
 ```
 
-## Creating mortality tables from data and modifying them using various helper functions
+# Creating mortality tables from data and modifying them using various helper functions
 
 The package \code{MortalityTables} not only provides the data structures and some
 examples of mortality tables, it also provides several functions to create mortality
@@ -652,7 +690,7 @@ plotMortalityTables(TableForProduct, PopulationTable.AT2017.Cohort.FINAL,
 ```
 
 
-## Pension Tables
+# Pension Tables
 Pension tables generalize mortality tables in that the state space is increased 
 from two states (alive / dead) to four states (active / invalidity or realy 
 retirement / old age retirement / dead). As a consequence, there is no longer 
diff --git a/vignettes/using-the-mortalityTables-package.html b/vignettes/using-the-mortalityTables-package.html
index 0aced5486d9cb2802eeaf319e028cf9b37af97a5..0e56910fe793bfa305521a72677b39a23154084d 100644
--- a/vignettes/using-the-mortalityTables-package.html
+++ b/vignettes/using-the-mortalityTables-package.html
@@ -324,32 +324,33 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 
 <div id="TOC">
 <ul>
-<li><a href="#types-of-life-tables">Types of Life Tables</a></li>
-<li><a href="#loading-the-mortalitytables-package">Loading the MortalityTables package</a></li>
-<li><a href="#provided-data-sets">Provided Data Sets</a></li>
-<li><a href="#working-with-life-table-objects">Working with life table objects</a><ul>
-<li><a href="#plotting-life-tables">Plotting life tables</a></li>
-<li><a href="#obtaining-period-and-cohort-death-probabilities">Obtaining period and cohort death probabilities</a></li>
-<li><a href="#other-data-extraction-functions-from-life-tables">Other data extraction functions from life tables</a></li>
+<li><a href="#types-of-life-tables"><span class="toc-section-number">1</span> Types of Life Tables</a></li>
+<li><a href="#loading-the-mortalitytables-package"><span class="toc-section-number">2</span> Loading the MortalityTables package</a></li>
+<li><a href="#provided-data-sets"><span class="toc-section-number">3</span> Provided Data Sets</a></li>
+<li><a href="#working-with-life-table-objects"><span class="toc-section-number">4</span> Working with life table objects</a><ul>
+<li><a href="#plotting-life-tables"><span class="toc-section-number">4.1</span> Plotting life tables</a></li>
+<li><a href="#obtaining-period-and-cohort-death-probabilities"><span class="toc-section-number">4.2</span> Obtaining period and cohort death probabilities</a></li>
+<li><a href="#other-data-extraction-functions-from-life-tables"><span class="toc-section-number">4.3</span> Other data extraction functions from life tables</a></li>
+<li><a href="#dimensional-information"><span class="toc-section-number">4.4</span> Dimensional information</a></li>
 </ul></li>
-<li><a href="#creating-a-life-table-object">Creating a life table object</a><ul>
-<li><a href="#period-life-tables">Period life tables</a></li>
-<li><a href="#cohort-life-tables-with-trend-projection">Cohort life tables with trend projection</a></li>
-<li><a href="#cohort-life-tables-with-age-shift">Cohort life tables with age-shift</a></li>
+<li><a href="#creating-a-life-table-object"><span class="toc-section-number">5</span> Creating a life table object</a><ul>
+<li><a href="#period-life-tables"><span class="toc-section-number">5.1</span> Period life tables</a></li>
+<li><a href="#cohort-life-tables-with-trend-projection"><span class="toc-section-number">5.2</span> Cohort life tables with trend projection</a></li>
+<li><a href="#cohort-life-tables-with-age-shift"><span class="toc-section-number">5.3</span> Cohort life tables with age-shift</a></li>
 </ul></li>
-<li><a href="#modifying-life-table-objects">Modifying life table objects</a><ul>
-<li><a href="#copying-life-tables">Copying life tables</a></li>
-<li><a href="#adding-a-security-loading-to-the-raw-probabilities">Adding a security loading to the raw probabilities</a></li>
-<li><a href="#adding-a-modification-to-the-raw-probabilities">Adding a modification to the raw probabilities</a></li>
+<li><a href="#modifying-life-table-objects"><span class="toc-section-number">6</span> Modifying life table objects</a><ul>
+<li><a href="#copying-life-tables"><span class="toc-section-number">6.1</span> Copying life tables</a></li>
+<li><a href="#adding-a-security-loading-to-the-raw-probabilities"><span class="toc-section-number">6.2</span> Adding a security loading to the raw probabilities</a></li>
+<li><a href="#adding-a-modification-to-the-raw-probabilities"><span class="toc-section-number">6.3</span> Adding a modification to the raw probabilities</a></li>
 </ul></li>
-<li><a href="#creating-mortality-tables-from-data-and-modifying-them-using-various-helper-functions">Creating mortality tables from data and modifying them using various helper functions</a></li>
-<li><a href="#pension-tables">Pension Tables</a></li>
+<li><a href="#creating-mortality-tables-from-data-and-modifying-them-using-various-helper-functions"><span class="toc-section-number">7</span> Creating mortality tables from data and modifying them using various helper functions</a></li>
+<li><a href="#pension-tables"><span class="toc-section-number">8</span> Pension Tables</a></li>
 </ul>
 </div>
 
 <p>The MortalityTables package provides the <code>mortalityTable</code> base class and some derived classes to handle different types of mortality tables (also called life tables), mainly used for life insurance. Additionally it provides a plot function to compare multiple life tables either directly using the absolute mortalities in log-linear plots or using relative mortalities as percentages of a given reference table.</p>
-<div id="types-of-life-tables" class="section level2">
-<h2>Types of Life Tables</h2>
+<div id="types-of-life-tables" class="section level1">
+<h1><span class="header-section-number">1</span> Types of Life Tables</h1>
 <p>Provided types of mortality tables are:</p>
 <ul>
 <li><dl>
@@ -403,12 +404,12 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 </dl></li>
 </ul>
 </div>
-<div id="loading-the-mortalitytables-package" class="section level2">
-<h2>Loading the MortalityTables package</h2>
+<div id="loading-the-mortalitytables-package" class="section level1">
+<h1><span class="header-section-number">2</span> Loading the MortalityTables package</h1>
 <div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1"></a><span class="kw">library</span>(<span class="st">&quot;MortalityTables&quot;</span>)</span></code></pre></div>
 </div>
-<div id="provided-data-sets" class="section level2">
-<h2>Provided Data Sets</h2>
+<div id="provided-data-sets" class="section level1">
+<h1><span class="header-section-number">3</span> Provided Data Sets</h1>
 <p>The package provides several real-life life tables published by census bureaus and actuarial associations around the world. You can use the function <code>mortalityTables.list</code> to list all available datasets (if no argument is given) or all datasets that match the given pattern (wildcard character is *). You can then use <code>mortalityTables.load</code> to load either one single data set or all datasets that match the pattern.</p>
 <div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1"></a><span class="co"># list all available data sets</span></span>
 <span id="cb2-2"><a href="#cb2-2"></a><span class="kw">mortalityTables.list</span>()</span>
@@ -454,10 +455,10 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 <span id="cb2-42"><a href="#cb2-42"></a><span class="co">#&gt; Loading table dataset &#39;Austria_Census&#39;</span></span></code></pre></div>
 <p>In the next few sections we will always use some of the provided life tables for demonstration purposes.</p>
 </div>
-<div id="working-with-life-table-objects" class="section level2">
-<h2>Working with life table objects</h2>
-<div id="plotting-life-tables" class="section level3">
-<h3>Plotting life tables</h3>
+<div id="working-with-life-table-objects" class="section level1">
+<h1><span class="header-section-number">4</span> Working with life table objects</h1>
+<div id="plotting-life-tables" class="section level2">
+<h2><span class="header-section-number">4.1</span> Plotting life tables</h2>
 <p>The package provides several functions to plot lifetables:</p>
 <ul>
 <li><dl>
@@ -501,8 +502,8 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 <span id="cb6-3"><a href="#cb6-3"></a><span class="kw">plot</span>(AVOe1996R.male, AVOe2005R.male, <span class="dt">Period =</span> <span class="dv">2020</span>, <span class="dt">title =</span> <span class="st">&quot;Comparison for observation year 2020&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 </div>
-<div id="obtaining-period-and-cohort-death-probabilities" class="section level3">
-<h3>Obtaining period and cohort death probabilities</h3>
+<div id="obtaining-period-and-cohort-death-probabilities" class="section level2">
+<h2><span class="header-section-number">4.2</span> Obtaining period and cohort death probabilities</h2>
 <p>To obtain death probabilities from all the different types of tables, there are two functions:</p>
 <ul>
 <li><code>deathProbabilities</code>: Returns the (cohort) death probabilities of the life table given the birth year</li>
@@ -531,8 +532,8 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 <p><img src="" /><!-- --></p>
 <p>Not surprisingly, at 43 years the two death probabilities cross, because in 2020 the person born 1977 is 43 years old, so the <span class="math inline">\(q_x\)</span> refer to the same person. However, for younger ages, the period 2020 probabilities are lower, because the mortality improvement for those younger ages has much less time in the cohort 1977 table. For ages above 43 the cohort table describes the mortality further into the future than 2020, so there is more improvement and thus lower death probabilities for the cohort life table.</p>
 </div>
-<div id="other-data-extraction-functions-from-life-tables" class="section level3">
-<h3>Other data extraction functions from life tables</h3>
+<div id="other-data-extraction-functions-from-life-tables" class="section level2">
+<h2><span class="header-section-number">4.3</span> Other data extraction functions from life tables</h2>
 <table>
 <colgroup>
 <col width="30%"></col>
@@ -572,42 +573,134 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 </tbody>
 </table>
 </div>
+<div id="dimensional-information" class="section level2">
+<h2><span class="header-section-number">4.4</span> Dimensional information</h2>
+<p>Mortality tables are always created for special purposes, particular collectives, types of risk, sex, year, etc. So, each [MortalityTable] object provides for a list of such factors that describe the underlying target of the mortality table and that can be used e.g. when plotting mortality Tables (just like any other factor variable in a ggplot):</p>
+<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1"></a><span class="kw">plotMortalityTables</span>(</span>
+<span id="cb9-2"><a href="#cb9-2"></a>  mort.AT.census[<span class="kw">c</span>(<span class="st">&quot;m&quot;</span>, <span class="st">&quot;w&quot;</span>), <span class="kw">c</span>(<span class="st">&quot;1951&quot;</span>, <span class="st">&quot;1991&quot;</span>, <span class="st">&quot;2001&quot;</span>, <span class="st">&quot;2011&quot;</span>)]) <span class="op">+</span><span class="st"> </span></span>
+<span id="cb9-3"><a href="#cb9-3"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">color =</span> <span class="kw">as.factor</span>(year), <span class="dt">linetype =</span> sex) <span class="op">+</span><span class="st"> </span><span class="kw">labs</span>(<span class="dt">color =</span> <span class="st">&quot;Period&quot;</span>, <span class="dt">linetype =</span> <span class="st">&quot;Sex&quot;</span>)</span></code></pre></div>
+<p><img src="" /><!-- --></p>
+<p>The dimensional information is stored inside the  field of the MortalityTable:</p>
+<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1"></a>mort.AT.census.<span class="fl">2011.</span>male<span class="op">@</span>data<span class="op">$</span>dim</span>
+<span id="cb10-2"><a href="#cb10-2"></a><span class="co">#&gt; $sex</span></span>
+<span id="cb10-3"><a href="#cb10-3"></a><span class="co">#&gt; [1] &quot;m&quot;</span></span>
+<span id="cb10-4"><a href="#cb10-4"></a><span class="co">#&gt; </span></span>
+<span id="cb10-5"><a href="#cb10-5"></a><span class="co">#&gt; $collar</span></span>
+<span id="cb10-6"><a href="#cb10-6"></a><span class="co">#&gt; [1] &quot;Gesamtbevölkerung&quot;</span></span>
+<span id="cb10-7"><a href="#cb10-7"></a><span class="co">#&gt; </span></span>
+<span id="cb10-8"><a href="#cb10-8"></a><span class="co">#&gt; $type</span></span>
+<span id="cb10-9"><a href="#cb10-9"></a><span class="co">#&gt; [1] &quot;Volkssterbetafel Österreich&quot;</span></span>
+<span id="cb10-10"><a href="#cb10-10"></a><span class="co">#&gt; </span></span>
+<span id="cb10-11"><a href="#cb10-11"></a><span class="co">#&gt; $data</span></span>
+<span id="cb10-12"><a href="#cb10-12"></a><span class="co">#&gt; [1] &quot;official&quot;</span></span>
+<span id="cb10-13"><a href="#cb10-13"></a><span class="co">#&gt; </span></span>
+<span id="cb10-14"><a href="#cb10-14"></a><span class="co">#&gt; $year</span></span>
+<span id="cb10-15"><a href="#cb10-15"></a><span class="co">#&gt; [1] 2011</span></span></code></pre></div>
+<p>There are no hard and enforced rules for these names and the potential values of the dimensional information. There are, however, some conventions that are obeyed by most of the tables provided by this package:</p>
+<table>
+<colgroup>
+<col width="18%"></col>
+<col width="47%"></col>
+<col width="34%"></col>
+</colgroup>
+<thead>
+<tr class="header">
+<th align="left">Key</th>
+<th align="left">Potential values</th>
+<th align="left">Description</th>
+</tr>
+</thead>
+<tbody>
+<tr class="odd">
+<td align="left">sex</td>
+<td align="left">“m”, “w”, “u”</td>
+<td align="left">Sex</td>
+</tr>
+<tr class="even">
+<td align="left">collar</td>
+<td align="left">“Rententafel”, “Gruppenrententafel”, “Einzel”, “Gruppe”, “Gesamtbevölkerung”, “Raucher”, “Nichtraucher”, “Arbeiter”, “Angestellte”, “Mischtafel”</td>
+<td align="left">Collective, to which the mortality table applies</td>
+</tr>
+<tr class="odd">
+<td align="left">type</td>
+<td align="left">“Rententafel”, “Volkssterbetafel”, “Pensionstafel”, “Bevölkerungsprognose”, “Beobachtung”, “Risikotafel”</td>
+<td align="left">The type of table</td>
+</tr>
+<tr class="even">
+<td align="left">data</td>
+<td align="left">“official”, “raw”, “loaded”, “loaded, group”, “unloaded”, “age-shifted”, “geglättet”</td>
+<td align="left">The type of data</td>
+</tr>
+<tr class="odd">
+<td align="left">year</td>
+<td align="left">numeric year, “2014-2080”, “1980-2017”, “1947-2017”</td>
+<td align="left">The year (or range) described by the table</td>
+</tr>
+<tr class="even">
+<td align="left">tablename</td>
+<td align="left">“AVÖ 1996-R”, “AVÖ 2005-R”, “EROM 85”, “EROF 85”, “EROM G1950”, “EROF G1950”, “EROM G1950 AV”, “EROF G1950 AV”, “RR67”, “DAV 1994R”, “DAV 2004R”, “DAV 1994T”, “DAV 2008T”, “1971 IAM”, “1971 IAM projected”, “1983a”, “1983 GAM”, “1994 GAM”, “1994 GAR”, “2012 IAM”, “Annuity 2000”, “AVÖ 1999-P”, “AVÖ 2008-P”, “Ettl-Pagler 1989”, “DAV 2005-G”</td>
+<td align="left">The formal name of the table</td>
+</tr>
+<tr class="odd">
+<td align="left">risk</td>
+<td align="left">“Tod”, “sonst. Ausscheiden”, “Invalidisierung”, “Partnerwahrscheinlichkeit im Tod”, “mittl. Hinterbliebenenalter”</td>
+<td align="left">The type of risk described by the table</td>
+</tr>
+<tr class="even">
+<td align="left">probability</td>
+<td align="left">“qx”, “sx”, “ix”, “qgx”, “qix”, “qpx”, “hx”, “qwy”, “yx”</td>
+<td align="left">The probability described by the table (corresponds with “risk”)</td>
+</tr>
+<tr class="odd">
+<td align="left">country</td>
+<td align="left">“Österreich”, “Deutschland”, “USA”, …</td>
+<td align="left">The geographic region of the table (not neccessarily only countries)</td>
+</tr>
+<tr class="even">
+<td align="left">source</td>
+<td align="left">“AVÖ”, “Statistik Austria”, “DAV”, …</td>
+<td align="left">Source of the data / table</td>
+</tr>
+</tbody>
+</table>
+<p>Some of the provided datasets (mortality tables) have not yet fully implemented these conventions, so pleasy be vary when using them.</p>
+</div>
 </div>
-<div id="creating-a-life-table-object" class="section level2">
-<h2>Creating a life table object</h2>
-<div id="period-life-tables" class="section level3">
-<h3>Period life tables</h3>
+<div id="creating-a-life-table-object" class="section level1">
+<h1><span class="header-section-number">5</span> Creating a life table object</h1>
+<div id="period-life-tables" class="section level2">
+<h2><span class="header-section-number">5.1</span> Period life tables</h2>
 <p>Period death probabilities are the simplest type of life table, giving the probabilities of death observed during the corresponding year (the “period”). The death probabilities of different ages refer to different persons, being of the corresponding ages in the observation year. All that is needed to create a period life table are the death probabilities and the corresponding ages:</p>
-<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1"></a>lt =<span class="st"> </span><span class="kw">mortalityTable.period</span>(<span class="dt">name =</span> <span class="st">&quot;Sample period lifetable&quot;</span>, <span class="dt">ages =</span> <span class="dv">1</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">deathProbs =</span> <span class="kw">exp</span>(<span class="op">-</span>(<span class="dv">99</span><span class="op">:</span><span class="dv">1</span>)<span class="op">/</span><span class="dv">10</span>))</span>
-<span id="cb9-2"><a href="#cb9-2"></a><span class="kw">plot</span>(lt, <span class="dt">title =</span> <span class="st">&quot;Simple log-linear period mortality table&quot;</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1"></a>lt =<span class="st"> </span><span class="kw">mortalityTable.period</span>(<span class="dt">name =</span> <span class="st">&quot;Sample period lifetable&quot;</span>, <span class="dt">ages =</span> <span class="dv">1</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">deathProbs =</span> <span class="kw">exp</span>(<span class="op">-</span>(<span class="dv">99</span><span class="op">:</span><span class="dv">1</span>)<span class="op">/</span><span class="dv">10</span>))</span>
+<span id="cb11-2"><a href="#cb11-2"></a><span class="kw">plot</span>(lt, <span class="dt">title =</span> <span class="st">&quot;Simple log-linear period mortality table&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
-<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1"></a><span class="kw">deathProbabilities</span>(lt)</span>
-<span id="cb10-2"><a href="#cb10-2"></a><span class="co">#&gt;  [1] 5.017468e-05 5.545160e-05 6.128350e-05 6.772874e-05 7.485183e-05</span></span>
-<span id="cb10-3"><a href="#cb10-3"></a><span class="co">#&gt;  [6] 8.272407e-05 9.142423e-05 1.010394e-04 1.116658e-04 1.234098e-04</span></span>
-<span id="cb10-4"><a href="#cb10-4"></a><span class="co">#&gt; [11] 1.363889e-04 1.507331e-04 1.665858e-04 1.841058e-04 2.034684e-04</span></span>
-<span id="cb10-5"><a href="#cb10-5"></a><span class="co">#&gt; [16] 2.248673e-04 2.485168e-04 2.746536e-04 3.035391e-04 3.354626e-04</span></span>
-<span id="cb10-6"><a href="#cb10-6"></a><span class="co">#&gt; [21] 3.707435e-04 4.097350e-04 4.528272e-04 5.004514e-04 5.530844e-04</span></span>
-<span id="cb10-7"><a href="#cb10-7"></a><span class="co">#&gt; [26] 6.112528e-04 6.755388e-04 7.465858e-04 8.251049e-04 9.118820e-04</span></span>
-<span id="cb10-8"><a href="#cb10-8"></a><span class="co">#&gt; [31] 1.007785e-03 1.113775e-03 1.230912e-03 1.360368e-03 1.503439e-03</span></span>
-<span id="cb10-9"><a href="#cb10-9"></a><span class="co">#&gt; [36] 1.661557e-03 1.836305e-03 2.029431e-03 2.242868e-03 2.478752e-03</span></span>
-<span id="cb10-10"><a href="#cb10-10"></a><span class="co">#&gt; [41] 2.739445e-03 3.027555e-03 3.345965e-03 3.697864e-03 4.086771e-03</span></span>
-<span id="cb10-11"><a href="#cb10-11"></a><span class="co">#&gt; [46] 4.516581e-03 4.991594e-03 5.516564e-03 6.096747e-03 6.737947e-03</span></span>
-<span id="cb10-12"><a href="#cb10-12"></a><span class="co">#&gt; [51] 7.446583e-03 8.229747e-03 9.095277e-03 1.005184e-02 1.110900e-02</span></span>
-<span id="cb10-13"><a href="#cb10-13"></a><span class="co">#&gt; [56] 1.227734e-02 1.356856e-02 1.499558e-02 1.657268e-02 1.831564e-02</span></span>
-<span id="cb10-14"><a href="#cb10-14"></a><span class="co">#&gt; [61] 2.024191e-02 2.237077e-02 2.472353e-02 2.732372e-02 3.019738e-02</span></span>
-<span id="cb10-15"><a href="#cb10-15"></a><span class="co">#&gt; [66] 3.337327e-02 3.688317e-02 4.076220e-02 4.504920e-02 4.978707e-02</span></span>
-<span id="cb10-16"><a href="#cb10-16"></a><span class="co">#&gt; [71] 5.502322e-02 6.081006e-02 6.720551e-02 7.427358e-02 8.208500e-02</span></span>
-<span id="cb10-17"><a href="#cb10-17"></a><span class="co">#&gt; [76] 9.071795e-02 1.002588e-01 1.108032e-01 1.224564e-01 1.353353e-01</span></span>
-<span id="cb10-18"><a href="#cb10-18"></a><span class="co">#&gt; [81] 1.495686e-01 1.652989e-01 1.826835e-01 2.018965e-01 2.231302e-01</span></span>
-<span id="cb10-19"><a href="#cb10-19"></a><span class="co">#&gt; [86] 2.465970e-01 2.725318e-01 3.011942e-01 3.328711e-01 3.678794e-01</span></span>
-<span id="cb10-20"><a href="#cb10-20"></a><span class="co">#&gt; [91] 4.065697e-01 4.493290e-01 4.965853e-01 5.488116e-01 6.065307e-01</span></span>
-<span id="cb10-21"><a href="#cb10-21"></a><span class="co">#&gt; [96] 6.703200e-01 7.408182e-01 8.187308e-01 9.048374e-01</span></span></code></pre></div>
+<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1"></a><span class="kw">deathProbabilities</span>(lt)</span>
+<span id="cb12-2"><a href="#cb12-2"></a><span class="co">#&gt;  [1] 5.017468e-05 5.545160e-05 6.128350e-05 6.772874e-05 7.485183e-05</span></span>
+<span id="cb12-3"><a href="#cb12-3"></a><span class="co">#&gt;  [6] 8.272407e-05 9.142423e-05 1.010394e-04 1.116658e-04 1.234098e-04</span></span>
+<span id="cb12-4"><a href="#cb12-4"></a><span class="co">#&gt; [11] 1.363889e-04 1.507331e-04 1.665858e-04 1.841058e-04 2.034684e-04</span></span>
+<span id="cb12-5"><a href="#cb12-5"></a><span class="co">#&gt; [16] 2.248673e-04 2.485168e-04 2.746536e-04 3.035391e-04 3.354626e-04</span></span>
+<span id="cb12-6"><a href="#cb12-6"></a><span class="co">#&gt; [21] 3.707435e-04 4.097350e-04 4.528272e-04 5.004514e-04 5.530844e-04</span></span>
+<span id="cb12-7"><a href="#cb12-7"></a><span class="co">#&gt; [26] 6.112528e-04 6.755388e-04 7.465858e-04 8.251049e-04 9.118820e-04</span></span>
+<span id="cb12-8"><a href="#cb12-8"></a><span class="co">#&gt; [31] 1.007785e-03 1.113775e-03 1.230912e-03 1.360368e-03 1.503439e-03</span></span>
+<span id="cb12-9"><a href="#cb12-9"></a><span class="co">#&gt; [36] 1.661557e-03 1.836305e-03 2.029431e-03 2.242868e-03 2.478752e-03</span></span>
+<span id="cb12-10"><a href="#cb12-10"></a><span class="co">#&gt; [41] 2.739445e-03 3.027555e-03 3.345965e-03 3.697864e-03 4.086771e-03</span></span>
+<span id="cb12-11"><a href="#cb12-11"></a><span class="co">#&gt; [46] 4.516581e-03 4.991594e-03 5.516564e-03 6.096747e-03 6.737947e-03</span></span>
+<span id="cb12-12"><a href="#cb12-12"></a><span class="co">#&gt; [51] 7.446583e-03 8.229747e-03 9.095277e-03 1.005184e-02 1.110900e-02</span></span>
+<span id="cb12-13"><a href="#cb12-13"></a><span class="co">#&gt; [56] 1.227734e-02 1.356856e-02 1.499558e-02 1.657268e-02 1.831564e-02</span></span>
+<span id="cb12-14"><a href="#cb12-14"></a><span class="co">#&gt; [61] 2.024191e-02 2.237077e-02 2.472353e-02 2.732372e-02 3.019738e-02</span></span>
+<span id="cb12-15"><a href="#cb12-15"></a><span class="co">#&gt; [66] 3.337327e-02 3.688317e-02 4.076220e-02 4.504920e-02 4.978707e-02</span></span>
+<span id="cb12-16"><a href="#cb12-16"></a><span class="co">#&gt; [71] 5.502322e-02 6.081006e-02 6.720551e-02 7.427358e-02 8.208500e-02</span></span>
+<span id="cb12-17"><a href="#cb12-17"></a><span class="co">#&gt; [76] 9.071795e-02 1.002588e-01 1.108032e-01 1.224564e-01 1.353353e-01</span></span>
+<span id="cb12-18"><a href="#cb12-18"></a><span class="co">#&gt; [81] 1.495686e-01 1.652989e-01 1.826835e-01 2.018965e-01 2.231302e-01</span></span>
+<span id="cb12-19"><a href="#cb12-19"></a><span class="co">#&gt; [86] 2.465970e-01 2.725318e-01 3.011942e-01 3.328711e-01 3.678794e-01</span></span>
+<span id="cb12-20"><a href="#cb12-20"></a><span class="co">#&gt; [91] 4.065697e-01 4.493290e-01 4.965853e-01 5.488116e-01 6.065307e-01</span></span>
+<span id="cb12-21"><a href="#cb12-21"></a><span class="co">#&gt; [96] 6.703200e-01 7.408182e-01 8.187308e-01 9.048374e-01</span></span></code></pre></div>
 <!-- ### Observed life tables -->
 <!-- The observations for the given years -->
 <!-- TODO -->
 </div>
-<div id="cohort-life-tables-with-trend-projection" class="section level3">
-<h3>Cohort life tables with trend projection</h3>
+<div id="cohort-life-tables-with-trend-projection" class="section level2">
+<h2><span class="header-section-number">5.2</span> Cohort life tables with trend projection</h2>
 <p>A cohort life table with trend projection needs the following parameters:</p>
 <ul>
 <li>The base table <span class="math inline">\(q_x^{(base)}\)</span> (death probabilities) for the given base period as a vector</li>
@@ -615,52 +708,52 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 <li>The base year (numeric)</li>
 <li></li>
 </ul>
-<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1"></a>atPlus2 =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>(</span>
-<span id="cb11-2"><a href="#cb11-2"></a>    <span class="dt">name =</span> <span class="st">&quot;Austrian Census Males 2011, 2% yearly trend&quot;</span>,</span>
-<span id="cb11-3"><a href="#cb11-3"></a>    <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span>
-<span id="cb11-4"><a href="#cb11-4"></a>    <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
-<span id="cb11-5"><a href="#cb11-5"></a>    <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
-<span id="cb11-6"><a href="#cb11-6"></a>    <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male)))</span>
-<span id="cb11-7"><a href="#cb11-7"></a>)</span></code></pre></div>
+<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1"></a>atPlus2 =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>(</span>
+<span id="cb13-2"><a href="#cb13-2"></a>    <span class="dt">name =</span> <span class="st">&quot;Austrian Census Males 2011, 2% yearly trend&quot;</span>,</span>
+<span id="cb13-3"><a href="#cb13-3"></a>    <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span>
+<span id="cb13-4"><a href="#cb13-4"></a>    <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
+<span id="cb13-5"><a href="#cb13-5"></a>    <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
+<span id="cb13-6"><a href="#cb13-6"></a>    <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male)))</span>
+<span id="cb13-7"><a href="#cb13-7"></a>)</span></code></pre></div>
 <p>Some life tables do not assume a constant age-specific trend over time, but rather assume that the currently observed high mortality improvements are just a temporary effect, so the current trend is in effect only for some time and then reduces to some kind of long-term trend.</p>
 <p>There are two conceptual approaches: One is to use a trend dampening function that is simply applied to the starting trend. So, while the initial trend might be 3%, i.e. the projection will use <code>(ObservationYear-BaseYear) * OriginalYear</code>, over time it will assume the value <code>dampeningFunction(ObservationYear-BaseYear) * OriginalTrend</code>. The dampening function in this case gives the cumulated trend effect from the base year until the observation year. To implement this trend reduction with the MortalityTables package, simply pass a one-argument function as the <code>dampingFunction</code> slot to the class, the argument will be the number of years from the base year (NOT the calendar year!):</p>
-<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1"></a>atPlus2.damp =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>(</span>
-<span id="cb12-2"><a href="#cb12-2"></a>    <span class="dt">name =</span> <span class="st">&quot;Austrian M &#39;11, 2% yearly, damping until 2111&quot;</span>,</span>
-<span id="cb12-3"><a href="#cb12-3"></a>    <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span>
-<span id="cb12-4"><a href="#cb12-4"></a>    <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
-<span id="cb12-5"><a href="#cb12-5"></a>    <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
-<span id="cb12-6"><a href="#cb12-6"></a>    <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span>
-<span id="cb12-7"><a href="#cb12-7"></a>    <span class="co"># damping function: 2011: full effect, linear reduction until yearly trend=0 in 2111:</span></span>
-<span id="cb12-8"><a href="#cb12-8"></a>    <span class="co"># 2011: 100%, 2012: 99%, 2013: 98% =&gt; For 2013 we have a cumulative trend </span></span>
-<span id="cb12-9"><a href="#cb12-9"></a>    <span class="co"># of 297% instead of 300% for three full yearly trends!</span></span>
-<span id="cb12-10"><a href="#cb12-10"></a>    <span class="dt">dampingFunction =</span> <span class="cf">function</span>(n) { n <span class="op">-</span><span class="st"> </span>n <span class="op">*</span><span class="st"> </span>(n <span class="op">+</span><span class="st"> </span><span class="dv">1</span>) <span class="op">/</span><span class="st"> </span><span class="dv">2</span> <span class="op">/</span><span class="st"> </span><span class="dv">100</span> }</span>
-<span id="cb12-11"><a href="#cb12-11"></a>)</span>
-<span id="cb12-12"><a href="#cb12-12"></a></span>
-<span id="cb12-13"><a href="#cb12-13"></a><span class="kw">plot</span>(mort.AT.census.<span class="fl">2011.</span>male, atPlus2, atPlus2.damp, <span class="dt">YOB =</span> <span class="dv">2011</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code></pre></div>
+<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1"></a>atPlus2.damp =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>(</span>
+<span id="cb14-2"><a href="#cb14-2"></a>    <span class="dt">name =</span> <span class="st">&quot;Austrian M &#39;11, 2% yearly, damping until 2111&quot;</span>,</span>
+<span id="cb14-3"><a href="#cb14-3"></a>    <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span>
+<span id="cb14-4"><a href="#cb14-4"></a>    <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
+<span id="cb14-5"><a href="#cb14-5"></a>    <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
+<span id="cb14-6"><a href="#cb14-6"></a>    <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span>
+<span id="cb14-7"><a href="#cb14-7"></a>    <span class="co"># damping function: 2011: full effect, linear reduction until yearly trend=0 in 2111:</span></span>
+<span id="cb14-8"><a href="#cb14-8"></a>    <span class="co"># 2011: 100%, 2012: 99%, 2013: 98% =&gt; For 2013 we have a cumulative trend </span></span>
+<span id="cb14-9"><a href="#cb14-9"></a>    <span class="co"># of 297% instead of 300% for three full yearly trends!</span></span>
+<span id="cb14-10"><a href="#cb14-10"></a>    <span class="dt">dampingFunction =</span> <span class="cf">function</span>(n) { n <span class="op">-</span><span class="st"> </span>n <span class="op">*</span><span class="st"> </span>(n <span class="op">+</span><span class="st"> </span><span class="dv">1</span>) <span class="op">/</span><span class="st"> </span><span class="dv">2</span> <span class="op">/</span><span class="st"> </span><span class="dv">100</span> }</span>
+<span id="cb14-11"><a href="#cb14-11"></a>)</span>
+<span id="cb14-12"><a href="#cb14-12"></a></span>
+<span id="cb14-13"><a href="#cb14-13"></a><span class="kw">plot</span>(mort.AT.census.<span class="fl">2011.</span>male, atPlus2, atPlus2.damp, <span class="dt">YOB =</span> <span class="dv">2011</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 <p>The other approach is to assume that instead of the initial trend, after some time a second trend (slot trend2) takes over. In this case, the <code>dampingFunction</code> slot is again a one-argument function that now gives the weight of the first trend, while <code>1-dampingFunction(year)</code> will give the weight of the second trend. As the weights will be applied for the whole period from the base- to the observation year, the weights need to be cumulated and normalized.</p>
 <p>The argument in this case is the actual calendar year (not the year since the base year like it was in the one-trend case above!)</p>
-<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1"></a>atPlus2.damp2 =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>(</span>
-<span id="cb13-2"><a href="#cb13-2"></a>    <span class="dt">name =</span> <span class="st">&quot;Austrian M &#39;11, 2% yearly, 1% long-term&quot;</span>,</span>
-<span id="cb13-3"><a href="#cb13-3"></a>    <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span>
-<span id="cb13-4"><a href="#cb13-4"></a>    <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
-<span id="cb13-5"><a href="#cb13-5"></a>    <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
-<span id="cb13-6"><a href="#cb13-6"></a>    <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span>
-<span id="cb13-7"><a href="#cb13-7"></a>    <span class="dt">trend2 =</span> <span class="kw">rep</span>(<span class="fl">0.01</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span>
-<span id="cb13-8"><a href="#cb13-8"></a>    <span class="co"># damping function interpolates between the two trends: </span></span>
-<span id="cb13-9"><a href="#cb13-9"></a>    <span class="co"># until 2021 trend 1, from 2031 trend 2, linearly beteen</span></span>
-<span id="cb13-10"><a href="#cb13-10"></a>    <span class="dt">dampingFunction =</span> <span class="cf">function</span>(year) { </span>
-<span id="cb13-11"><a href="#cb13-11"></a>        <span class="cf">if</span> (year <span class="op">&lt;=</span><span class="st"> </span><span class="dv">2021</span>) <span class="dv">1</span></span>
-<span id="cb13-12"><a href="#cb13-12"></a>        <span class="cf">else</span> <span class="cf">if</span> (year <span class="op">&gt;</span><span class="st"> </span><span class="dv">2031</span>) <span class="fl">14.5</span><span class="op">/</span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2011</span>)</span>
-<span id="cb13-13"><a href="#cb13-13"></a>        <span class="cf">else</span> <span class="dv">1</span> <span class="op">-</span><span class="st"> </span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2021</span>)<span class="op">*</span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2021</span> <span class="op">+</span><span class="st"> </span><span class="dv">1</span>) <span class="op">/</span><span class="st"> </span><span class="dv">20</span> <span class="op">/</span><span class="st"> </span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2011</span>)</span>
-<span id="cb13-14"><a href="#cb13-14"></a>    }</span>
-<span id="cb13-15"><a href="#cb13-15"></a>)</span>
-<span id="cb13-16"><a href="#cb13-16"></a></span>
-<span id="cb13-17"><a href="#cb13-17"></a><span class="kw">plot</span>(mort.AT.census.<span class="fl">2011.</span>male, atPlus2, atPlus2.damp, atPlus2.damp2, <span class="dt">YOB =</span> <span class="dv">2011</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code></pre></div>
-<p><img src="" /><!-- --></p>
+<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1"></a>atPlus2.damp2 =<span class="st"> </span><span class="kw">mortalityTable.trendProjection</span>(</span>
+<span id="cb15-2"><a href="#cb15-2"></a>    <span class="dt">name =</span> <span class="st">&quot;Austrian M &#39;11, 2% yearly, 1% long-term&quot;</span>,</span>
+<span id="cb15-3"><a href="#cb15-3"></a>    <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span>
+<span id="cb15-4"><a href="#cb15-4"></a>    <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
+<span id="cb15-5"><a href="#cb15-5"></a>    <span class="dt">ages =</span> <span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male),</span>
+<span id="cb15-6"><a href="#cb15-6"></a>    <span class="dt">trend =</span> <span class="kw">rep</span>(<span class="fl">0.02</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span>
+<span id="cb15-7"><a href="#cb15-7"></a>    <span class="dt">trend2 =</span> <span class="kw">rep</span>(<span class="fl">0.01</span>, <span class="kw">length</span>(<span class="kw">ages</span>(mort.AT.census.<span class="fl">2011.</span>male))),</span>
+<span id="cb15-8"><a href="#cb15-8"></a>    <span class="co"># damping function interpolates between the two trends: </span></span>
+<span id="cb15-9"><a href="#cb15-9"></a>    <span class="co"># until 2021 trend 1, from 2031 trend 2, linearly beteen</span></span>
+<span id="cb15-10"><a href="#cb15-10"></a>    <span class="dt">dampingFunction =</span> <span class="cf">function</span>(year) { </span>
+<span id="cb15-11"><a href="#cb15-11"></a>        <span class="cf">if</span> (year <span class="op">&lt;=</span><span class="st"> </span><span class="dv">2021</span>) <span class="dv">1</span></span>
+<span id="cb15-12"><a href="#cb15-12"></a>        <span class="cf">else</span> <span class="cf">if</span> (year <span class="op">&gt;</span><span class="st"> </span><span class="dv">2031</span>) <span class="fl">14.5</span><span class="op">/</span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2011</span>)</span>
+<span id="cb15-13"><a href="#cb15-13"></a>        <span class="cf">else</span> <span class="dv">1</span> <span class="op">-</span><span class="st"> </span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2021</span>)<span class="op">*</span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2021</span> <span class="op">+</span><span class="st"> </span><span class="dv">1</span>) <span class="op">/</span><span class="st"> </span><span class="dv">20</span> <span class="op">/</span><span class="st"> </span>(year <span class="op">-</span><span class="st"> </span><span class="dv">2011</span>)</span>
+<span id="cb15-14"><a href="#cb15-14"></a>    }</span>
+<span id="cb15-15"><a href="#cb15-15"></a>)</span>
+<span id="cb15-16"><a href="#cb15-16"></a></span>
+<span id="cb15-17"><a href="#cb15-17"></a><span class="kw">plot</span>(mort.AT.census.<span class="fl">2011.</span>male, atPlus2, atPlus2.damp, atPlus2.damp2, <span class="dt">YOB =</span> <span class="dv">2011</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.02</span>, <span class="fl">0.98</span>), <span class="dt">legend.justification =</span> <span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">1</span>))</span></code></pre></div>
+<p><img src="" /><!-- --></p>
 </div>
-<div id="cohort-life-tables-with-age-shift" class="section level3">
-<h3>Cohort life tables with age-shift</h3>
+<div id="cohort-life-tables-with-age-shift" class="section level2">
+<h2><span class="header-section-number">5.3</span> Cohort life tables with age-shift</h2>
 <p>Age-shifted cohort life tables are an approximation to full cohort life tables. Full cohort life tables apply a trend or improvment factors to the death probabilities of a base year to obtail death probabilities for a given birth year. Age-shifting rather modifies the age of the corresponding person and uses the same, unmodified base table for all cohorts. Basically, it works like this:</p>
 <blockquote>
 <p>A 60-year old born in 1950 has the same death probability as a 50-year old born in 1900, so instead of looking at the cohort 1950, we can look at the cohort 1900 and for a person born 1950 we treat him as if he were 10 years younger.</p>
@@ -668,241 +761,241 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
 <p>So, an age-shifted cohort life table just needs the base table and for each birth year the amount the age is modified.</p>
 <p>For those people, who think visually, age shifting works on the death probabilities as following: A normal trend moves the <span class="math inline">\(q_x\)</span> curve downwards. Age-shifting approximates this by shifting the <span class="math inline">\(q_x\)</span> curve to the right without modifying its values.</p>
 <p>The following example clearly shows this, with the blue curve being the base table for YOB 2011. A full trend projection moves the curve down to the green line, while age-shifting moves the base curve to the right so that it coincides as much as possible with the exact (green) line.</p>
-<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1"></a>baseTableShift =<span class="st"> </span><span class="kw">getCohortTable</span>(atPlus2, <span class="dt">YOB =</span> <span class="dv">2011</span>);</span>
-<span id="cb14-2"><a href="#cb14-2"></a>baseTableShift<span class="op">@</span>name =<span class="st"> &quot;Base table of the shift (YOB 2011)&quot;</span></span>
-<span id="cb14-3"><a href="#cb14-3"></a></span>
-<span id="cb14-4"><a href="#cb14-4"></a>atShifted =<span class="st"> </span><span class="kw">mortalityTable.ageShift</span>(</span>
-<span id="cb14-5"><a href="#cb14-5"></a>    <span class="dt">name =</span> <span class="st">&quot;Approximation with age shift&quot;</span>,</span>
-<span id="cb14-6"><a href="#cb14-6"></a>    <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span>
-<span id="cb14-7"><a href="#cb14-7"></a>    <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(baseTableShift),</span>
-<span id="cb14-8"><a href="#cb14-8"></a>    <span class="dt">ages =</span> <span class="kw">ages</span>(baseTableShift),</span>
-<span id="cb14-9"><a href="#cb14-9"></a>    <span class="dt">ageShifts =</span> <span class="kw">data.frame</span>(</span>
-<span id="cb14-10"><a href="#cb14-10"></a>        <span class="dt">shifts =</span> <span class="kw">c</span>(</span>
-<span id="cb14-11"><a href="#cb14-11"></a>            <span class="kw">rep</span>( <span class="dv">0</span>, <span class="dv">3</span>), </span>
-<span id="cb14-12"><a href="#cb14-12"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">1</span>, <span class="dv">3</span>), </span>
-<span id="cb14-13"><a href="#cb14-13"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">2</span>, <span class="dv">3</span>), </span>
-<span id="cb14-14"><a href="#cb14-14"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">3</span>, <span class="dv">3</span>), </span>
-<span id="cb14-15"><a href="#cb14-15"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">4</span>, <span class="dv">3</span>), </span>
-<span id="cb14-16"><a href="#cb14-16"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">5</span>, <span class="dv">3</span>), </span>
-<span id="cb14-17"><a href="#cb14-17"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">6</span>, <span class="dv">3</span>)</span>
-<span id="cb14-18"><a href="#cb14-18"></a>        ),</span>
-<span id="cb14-19"><a href="#cb14-19"></a>        <span class="dt">row.names =</span> <span class="dv">2011</span><span class="op">:</span><span class="dv">2031</span></span>
-<span id="cb14-20"><a href="#cb14-20"></a>    )</span>
-<span id="cb14-21"><a href="#cb14-21"></a>)</span>
-<span id="cb14-22"><a href="#cb14-22"></a></span>
-<span id="cb14-23"><a href="#cb14-23"></a><span class="kw">ageShift</span>(atShifted, <span class="dt">YOB =</span> <span class="dv">2021</span>)</span>
-<span id="cb14-24"><a href="#cb14-24"></a><span class="co">#&gt; [1] -3</span></span>
-<span id="cb14-25"><a href="#cb14-25"></a></span>
-<span id="cb14-26"><a href="#cb14-26"></a><span class="kw">plot</span>(baseTableShift, atPlus2, atShifted, <span class="dt">YOB =</span> <span class="dv">2021</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code></pre></div>
+<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1"></a>baseTableShift =<span class="st"> </span><span class="kw">getCohortTable</span>(atPlus2, <span class="dt">YOB =</span> <span class="dv">2011</span>);</span>
+<span id="cb16-2"><a href="#cb16-2"></a>baseTableShift<span class="op">@</span>name =<span class="st"> &quot;Base table of the shift (YOB 2011)&quot;</span></span>
+<span id="cb16-3"><a href="#cb16-3"></a></span>
+<span id="cb16-4"><a href="#cb16-4"></a>atShifted =<span class="st"> </span><span class="kw">mortalityTable.ageShift</span>(</span>
+<span id="cb16-5"><a href="#cb16-5"></a>    <span class="dt">name =</span> <span class="st">&quot;Approximation with age shift&quot;</span>,</span>
+<span id="cb16-6"><a href="#cb16-6"></a>    <span class="dt">baseYear =</span> <span class="dv">2011</span>,</span>
+<span id="cb16-7"><a href="#cb16-7"></a>    <span class="dt">deathProbs =</span> <span class="kw">deathProbabilities</span>(baseTableShift),</span>
+<span id="cb16-8"><a href="#cb16-8"></a>    <span class="dt">ages =</span> <span class="kw">ages</span>(baseTableShift),</span>
+<span id="cb16-9"><a href="#cb16-9"></a>    <span class="dt">ageShifts =</span> <span class="kw">data.frame</span>(</span>
+<span id="cb16-10"><a href="#cb16-10"></a>        <span class="dt">shifts =</span> <span class="kw">c</span>(</span>
+<span id="cb16-11"><a href="#cb16-11"></a>            <span class="kw">rep</span>( <span class="dv">0</span>, <span class="dv">3</span>), </span>
+<span id="cb16-12"><a href="#cb16-12"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">1</span>, <span class="dv">3</span>), </span>
+<span id="cb16-13"><a href="#cb16-13"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">2</span>, <span class="dv">3</span>), </span>
+<span id="cb16-14"><a href="#cb16-14"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">3</span>, <span class="dv">3</span>), </span>
+<span id="cb16-15"><a href="#cb16-15"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">4</span>, <span class="dv">3</span>), </span>
+<span id="cb16-16"><a href="#cb16-16"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">5</span>, <span class="dv">3</span>), </span>
+<span id="cb16-17"><a href="#cb16-17"></a>            <span class="kw">rep</span>(<span class="op">-</span><span class="dv">6</span>, <span class="dv">3</span>)</span>
+<span id="cb16-18"><a href="#cb16-18"></a>        ),</span>
+<span id="cb16-19"><a href="#cb16-19"></a>        <span class="dt">row.names =</span> <span class="dv">2011</span><span class="op">:</span><span class="dv">2031</span></span>
+<span id="cb16-20"><a href="#cb16-20"></a>    )</span>
+<span id="cb16-21"><a href="#cb16-21"></a>)</span>
+<span id="cb16-22"><a href="#cb16-22"></a></span>
+<span id="cb16-23"><a href="#cb16-23"></a><span class="kw">ageShift</span>(atShifted, <span class="dt">YOB =</span> <span class="dv">2021</span>)</span>
+<span id="cb16-24"><a href="#cb16-24"></a><span class="co">#&gt; [1] -3</span></span>
+<span id="cb16-25"><a href="#cb16-25"></a></span>
+<span id="cb16-26"><a href="#cb16-26"></a><span class="kw">plot</span>(baseTableShift, atPlus2, atShifted, <span class="dt">YOB =</span> <span class="dv">2021</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.8</span>,<span class="fl">0.75</span>))</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 <p>As one can see, for ages above 40 years, the table with 2% yearly trend and the corresponding age-shifted table have roughly the same mortalities. Below 40 years, the two are very different, so this approximation through age-shifting should really be used with extreme care!</p>
 </div>
 </div>
-<div id="modifying-life-table-objects" class="section level2">
-<h2>Modifying life table objects</h2>
-<div id="copying-life-tables" class="section level3">
-<h3>Copying life tables</h3>
+<div id="modifying-life-table-objects" class="section level1">
+<h1><span class="header-section-number">6</span> Modifying life table objects</h1>
+<div id="copying-life-tables" class="section level2">
+<h2><span class="header-section-number">6.1</span> Copying life tables</h2>
 <p>Life tables are simple pass-by-value S4 objects, so copying works by simple assignment.</p>
-<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1"></a>b =<span class="st"> </span>AVOe2005R.female </span>
-<span id="cb15-2"><a href="#cb15-2"></a>b<span class="op">@</span>name =<span class="st"> &quot;Modified Copy&quot;</span></span>
-<span id="cb15-3"><a href="#cb15-3"></a><span class="co"># only b is modified, not the original table</span></span>
-<span id="cb15-4"><a href="#cb15-4"></a>b<span class="op">@</span>modification =<span class="st"> </span><span class="cf">function</span>(qx) <span class="kw">pmax</span>(qx, <span class="fl">0.01</span>)  </span>
-<span id="cb15-5"><a href="#cb15-5"></a><span class="kw">plot</span>(AVOe2005R.female, b, <span class="dt">YOB =</span> <span class="dv">2000</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1"></a>b =<span class="st"> </span>AVOe2005R.female </span>
+<span id="cb17-2"><a href="#cb17-2"></a>b<span class="op">@</span>name =<span class="st"> &quot;Modified Copy&quot;</span></span>
+<span id="cb17-3"><a href="#cb17-3"></a><span class="co"># only b is modified, not the original table</span></span>
+<span id="cb17-4"><a href="#cb17-4"></a>b<span class="op">@</span>modification =<span class="st"> </span><span class="cf">function</span>(qx) <span class="kw">pmax</span>(qx, <span class="fl">0.01</span>)  </span>
+<span id="cb17-5"><a href="#cb17-5"></a><span class="kw">plot</span>(AVOe2005R.female, b, <span class="dt">YOB =</span> <span class="dv">2000</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 </div>
-<div id="adding-a-security-loading-to-the-raw-probabilities" class="section level3">
-<h3>Adding a security loading to the raw probabilities</h3>
+<div id="adding-a-security-loading-to-the-raw-probabilities" class="section level2">
+<h2><span class="header-section-number">6.2</span> Adding a security loading to the raw probabilities</h2>
 <p>When calculating premiums for life insurance contracts, one often needs to add a certain security loading on the raw death probabilities (e.g. 10% increased death probabilities) to account for statistical fluctuations. This can be easily done with the <code>setLoading</code> function that returns a copy of the given table and adds the given security loading.</p>
-<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1"></a>AVOe2005R.female.sec =<span class="st"> </span><span class="kw">setLoading</span>(AVOe2005R.female, <span class="dt">loading =</span> <span class="fl">0.1</span>);</span>
-<span id="cb16-2"><a href="#cb16-2"></a><span class="co"># Make sure the modified table has a new name, otherwise plots might break</span></span>
-<span id="cb16-3"><a href="#cb16-3"></a>AVOe2005R.female.sec<span class="op">@</span>name =<span class="st"> &quot;Table with 10% loading&quot;</span></span>
-<span id="cb16-4"><a href="#cb16-4"></a><span class="kw">plot</span>(AVOe2005R.female, AVOe2005R.female.sec, <span class="dt">title =</span> <span class="st">&quot;Original and modified table&quot;</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1"></a>AVOe2005R.female.sec =<span class="st"> </span><span class="kw">setLoading</span>(AVOe2005R.female, <span class="dt">loading =</span> <span class="fl">0.1</span>);</span>
+<span id="cb18-2"><a href="#cb18-2"></a><span class="co"># Make sure the modified table has a new name, otherwise plots might break</span></span>
+<span id="cb18-3"><a href="#cb18-3"></a>AVOe2005R.female.sec<span class="op">@</span>name =<span class="st"> &quot;Table with 10% loading&quot;</span></span>
+<span id="cb18-4"><a href="#cb18-4"></a><span class="kw">plot</span>(AVOe2005R.female, AVOe2005R.female.sec, <span class="dt">title =</span> <span class="st">&quot;Original and modified table&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 </div>
-<div id="adding-a-modification-to-the-raw-probabilities" class="section level3">
-<h3>Adding a modification to the raw probabilities</h3>
+<div id="adding-a-modification-to-the-raw-probabilities" class="section level2">
+<h2><span class="header-section-number">6.3</span> Adding a modification to the raw probabilities</h2>
 <p>Some uses require post-processing of the death probabilities, like adding a lower bound for the death probabilities. To achive this, all <code>mortalityTable</code>-derived classes have a slot <code>modification</code> that takes a function that is passed the vector of death probabilities.</p>
-<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1"></a>AVOe2005R.female.mod =<span class="st"> </span><span class="kw">setModification</span>(AVOe2005R.female, <span class="dt">modification =</span> <span class="cf">function</span>(qx) <span class="kw">pmax</span>(<span class="fl">0.03</span>, qx));</span>
-<span id="cb17-2"><a href="#cb17-2"></a><span class="co"># Make sure the modified table has a new name, otherwise plots might break</span></span>
-<span id="cb17-3"><a href="#cb17-3"></a>AVOe2005R.female.mod<span class="op">@</span>name =<span class="st"> &quot;Modified table (lower bound of 3%)&quot;</span></span>
-<span id="cb17-4"><a href="#cb17-4"></a><span class="kw">plot</span>(AVOe2005R.female, AVOe2005R.female.mod, <span class="dt">title =</span> <span class="st">&quot;Original and modified table&quot;</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1"></a>AVOe2005R.female.mod =<span class="st"> </span><span class="kw">setModification</span>(AVOe2005R.female, <span class="dt">modification =</span> <span class="cf">function</span>(qx) <span class="kw">pmax</span>(<span class="fl">0.03</span>, qx));</span>
+<span id="cb19-2"><a href="#cb19-2"></a><span class="co"># Make sure the modified table has a new name, otherwise plots might break</span></span>
+<span id="cb19-3"><a href="#cb19-3"></a>AVOe2005R.female.mod<span class="op">@</span>name =<span class="st"> &quot;Modified table (lower bound of 3%)&quot;</span></span>
+<span id="cb19-4"><a href="#cb19-4"></a><span class="kw">plot</span>(AVOe2005R.female, AVOe2005R.female.mod, <span class="dt">title =</span> <span class="st">&quot;Original and modified table&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 </div>
 </div>
-<div id="creating-mortality-tables-from-data-and-modifying-them-using-various-helper-functions" class="section level2">
-<h2>Creating mortality tables from data and modifying them using various helper functions</h2>
+<div id="creating-mortality-tables-from-data-and-modifying-them-using-various-helper-functions" class="section level1">
+<h1><span class="header-section-number">7</span> Creating mortality tables from data and modifying them using various helper functions</h1>
 <p>The package  not only provides the data structures and some examples of mortality tables, it also provides several functions to create mortality tables from raw data and modify them. The package provides several editing functions, which all begin with the prefix .</p>
 <p>Let us take as an example the provided dataset  of Austrian population data (exposure and deaths counts for the year 2017).</p>
 <p>For simplicity, we only look at the unisex data (i.e. male + female numbers, which are already provided as total exposure and total deaths). The raw mortality can then be calculated as </p>
-<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1"></a><span class="kw">library</span>(tidyverse)</span>
-<span id="cb18-2"><a href="#cb18-2"></a><span class="kw">data</span>(<span class="st">&quot;PopulationData.AT2017&quot;</span>, <span class="dt">package =</span> <span class="st">&quot;MortalityTables&quot;</span>)</span>
-<span id="cb18-3"><a href="#cb18-3"></a>PopulationData.AT2017.raw =<span class="st"> </span>PopulationData.AT2017 <span class="op">%&gt;%</span></span>
-<span id="cb18-4"><a href="#cb18-4"></a><span class="st">  </span><span class="kw">select</span>(age, exposure.total, deaths.total) <span class="op">%&gt;%</span></span>
-<span id="cb18-5"><a href="#cb18-5"></a><span class="st">  </span><span class="kw">mutate</span>(<span class="dt">qraw =</span> deaths.total <span class="op">/</span><span class="st"> </span>(exposure.total <span class="op">+</span><span class="st"> </span>deaths.total<span class="op">/</span><span class="dv">2</span>))</span></code></pre></div>
+<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1"></a><span class="kw">library</span>(tidyverse)</span>
+<span id="cb20-2"><a href="#cb20-2"></a><span class="kw">data</span>(<span class="st">&quot;PopulationData.AT2017&quot;</span>, <span class="dt">package =</span> <span class="st">&quot;MortalityTables&quot;</span>)</span>
+<span id="cb20-3"><a href="#cb20-3"></a>PopulationData.AT2017.raw =<span class="st"> </span>PopulationData.AT2017 <span class="op">%&gt;%</span></span>
+<span id="cb20-4"><a href="#cb20-4"></a><span class="st">  </span><span class="kw">select</span>(age, exposure.total, deaths.total) <span class="op">%&gt;%</span></span>
+<span id="cb20-5"><a href="#cb20-5"></a><span class="st">  </span><span class="kw">mutate</span>(<span class="dt">qraw =</span> deaths.total <span class="op">/</span><span class="st"> </span>(exposure.total <span class="op">+</span><span class="st"> </span>deaths.total<span class="op">/</span><span class="dv">2</span>))</span></code></pre></div>
 <p>We now have all data needed to put it into a [MortalityTable] object (some fields like the exposre and the data list are not strictly needed, but can be useful later on):</p>
-<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1"></a>PopulationTable.AT2017 =<span class="st"> </span><span class="kw">mortalityTable.period</span>(</span>
-<span id="cb19-2"><a href="#cb19-2"></a>  <span class="dt">name =</span> <span class="st">&quot;Austrian Population Mortality 2017 (raw)&quot;</span>, </span>
-<span id="cb19-3"><a href="#cb19-3"></a>  <span class="dt">baseYear =</span> <span class="dv">2017</span>,</span>
-<span id="cb19-4"><a href="#cb19-4"></a>  <span class="dt">deathProbs =</span> PopulationData.AT2017.raw<span class="op">$</span>qraw,</span>
-<span id="cb19-5"><a href="#cb19-5"></a>  <span class="dt">ages =</span> PopulationData.AT2017.raw<span class="op">$</span>age,</span>
-<span id="cb19-6"><a href="#cb19-6"></a>  <span class="dt">exposures =</span> PopulationData.AT2017.raw<span class="op">$</span>exposure.total,</span>
-<span id="cb19-7"><a href="#cb19-7"></a>  <span class="dt">data =</span> <span class="kw">list</span>(</span>
-<span id="cb19-8"><a href="#cb19-8"></a>    <span class="dt">deaths =</span> PopulationData.AT2017.raw<span class="op">$</span>deaths.total,</span>
-<span id="cb19-9"><a href="#cb19-9"></a>    <span class="dt">dim =</span> <span class="kw">list</span>(<span class="dt">sex =</span> <span class="st">&quot;u&quot;</span>, <span class="dt">collar =</span> <span class="st">&quot;Population&quot;</span>, <span class="dt">type =</span> <span class="st">&quot;raw&quot;</span>, <span class="dt">year =</span> <span class="st">&quot;2017&quot;</span>)</span>
-<span id="cb19-10"><a href="#cb19-10"></a>  )</span>
-<span id="cb19-11"><a href="#cb19-11"></a>)</span>
-<span id="cb19-12"><a href="#cb19-12"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (raw), 2017&quot;</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1"></a>PopulationTable.AT2017 =<span class="st"> </span><span class="kw">mortalityTable.period</span>(</span>
+<span id="cb21-2"><a href="#cb21-2"></a>  <span class="dt">name =</span> <span class="st">&quot;Austrian Population Mortality 2017 (raw)&quot;</span>, </span>
+<span id="cb21-3"><a href="#cb21-3"></a>  <span class="dt">baseYear =</span> <span class="dv">2017</span>,</span>
+<span id="cb21-4"><a href="#cb21-4"></a>  <span class="dt">deathProbs =</span> PopulationData.AT2017.raw<span class="op">$</span>qraw,</span>
+<span id="cb21-5"><a href="#cb21-5"></a>  <span class="dt">ages =</span> PopulationData.AT2017.raw<span class="op">$</span>age,</span>
+<span id="cb21-6"><a href="#cb21-6"></a>  <span class="dt">exposures =</span> PopulationData.AT2017.raw<span class="op">$</span>exposure.total,</span>
+<span id="cb21-7"><a href="#cb21-7"></a>  <span class="dt">data =</span> <span class="kw">list</span>(</span>
+<span id="cb21-8"><a href="#cb21-8"></a>    <span class="dt">deaths =</span> PopulationData.AT2017.raw<span class="op">$</span>deaths.total,</span>
+<span id="cb21-9"><a href="#cb21-9"></a>    <span class="dt">dim =</span> <span class="kw">list</span>(<span class="dt">sex =</span> <span class="st">&quot;u&quot;</span>, <span class="dt">collar =</span> <span class="st">&quot;Population&quot;</span>, <span class="dt">type =</span> <span class="st">&quot;raw&quot;</span>, <span class="dt">year =</span> <span class="st">&quot;2017&quot;</span>)</span>
+<span id="cb21-10"><a href="#cb21-10"></a>  )</span>
+<span id="cb21-11"><a href="#cb21-11"></a>)</span>
+<span id="cb21-12"><a href="#cb21-12"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (raw), 2017&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 <p>Of course, we sooner or later want to work with a smooth table rather than the raw death probabilities. The most common approach to smoothing mortality tables is the Whittaker-Henderson method of graduation, which is provided by the function [whittaker.mortalityTable()]. The parameters are the <span class="math inline">\(\ĺambda\)</span> smoothing parameter (determining how smooth the result shall be, which in turn means that the result might be quite distant from the raw probabiliteis in some ages) and the order of differences <span class="math inline">\(d\)</span> (the default 2 typically suffices). Since we have the exposures available and stored inside the table, the [whittaker.mortalityTable()] function will use the exposures as weight and so try to match age ranges with high exposure much better than e.g. old ages with hardly any living.</p>
-<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1"></a>PopulationTable.AT2017.smooth =<span class="st"> </span>PopulationTable.AT2017 <span class="op">%&gt;%</span></span>
-<span id="cb20-2"><a href="#cb20-2"></a><span class="st">  </span><span class="kw">whittaker.mortalityTable</span>(<span class="dt">lambda =</span> <span class="dv">1</span><span class="op">/</span><span class="dv">10</span>, <span class="dt">d =</span> <span class="dv">2</span>, <span class="dt">name.postfix =</span> <span class="st">&quot;, Whittaker&quot;</span>) <span class="op">%&gt;%</span></span>
-<span id="cb20-3"><a href="#cb20-3"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed&quot;</span>)</span>
-<span id="cb20-4"><a href="#cb20-4"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (raw and smoothed), 2017&quot;</span>)  <span class="op">+</span></span>
-<span id="cb20-5"><a href="#cb20-5"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
+<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1"></a>PopulationTable.AT2017.smooth =<span class="st"> </span>PopulationTable.AT2017 <span class="op">%&gt;%</span></span>
+<span id="cb22-2"><a href="#cb22-2"></a><span class="st">  </span><span class="kw">whittaker.mortalityTable</span>(<span class="dt">lambda =</span> <span class="dv">1</span><span class="op">/</span><span class="dv">10</span>, <span class="dt">d =</span> <span class="dv">2</span>, <span class="dt">name.postfix =</span> <span class="st">&quot;, Whittaker&quot;</span>) <span class="op">%&gt;%</span></span>
+<span id="cb22-3"><a href="#cb22-3"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed&quot;</span>)</span>
+<span id="cb22-4"><a href="#cb22-4"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (raw and smoothed), 2017&quot;</span>)  <span class="op">+</span></span>
+<span id="cb22-5"><a href="#cb22-5"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
 <p><img src="" /><!-- --> As a side note, this example also shows how the additional dimensional infos set be either the constructor of the table or the [mT.setDimInfo()] function and stored in the  list can be used by ggplot as aesthetics.</p>
 <p>Now, if we look at the exposures, we see that above age 95 we are below an exposure of 5000 and at age 100 we are below exposure 500. So, for these old ages we apparently do not have enough data to derive mortalities with sufficient significance. So, let’s cut the table at age 100:</p>
-<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1"></a>PopulationData.AT2017.raw <span class="op">%&gt;%</span><span class="st"> </span><span class="kw">filter</span>(age <span class="op">&gt;</span><span class="st"> </span><span class="dv">90</span>)</span>
-<span id="cb21-2"><a href="#cb21-2"></a><span class="co">#&gt; # A tibble: 20 x 4</span></span>
-<span id="cb21-3"><a href="#cb21-3"></a><span class="co">#&gt;      age exposure.total deaths.total  qraw</span></span>
-<span id="cb21-4"><a href="#cb21-4"></a><span class="co">#&gt;    &lt;dbl&gt;          &lt;dbl&gt;        &lt;dbl&gt; &lt;dbl&gt;</span></span>
-<span id="cb21-5"><a href="#cb21-5"></a><span class="co">#&gt;  1    91       15616.           2963 0.173</span></span>
-<span id="cb21-6"><a href="#cb21-6"></a><span class="co">#&gt;  2    92       12870.           2721 0.191</span></span>
-<span id="cb21-7"><a href="#cb21-7"></a><span class="co">#&gt;  3    93       10245.           2451 0.214</span></span>
-<span id="cb21-8"><a href="#cb21-8"></a><span class="co">#&gt;  4    94        8024.           2113 0.233</span></span>
-<span id="cb21-9"><a href="#cb21-9"></a><span class="co">#&gt;  5    95        5875.           1727 0.256</span></span>
-<span id="cb21-10"><a href="#cb21-10"></a><span class="co">#&gt;  6    96        4041.           1382 0.292</span></span>
-<span id="cb21-11"><a href="#cb21-11"></a><span class="co">#&gt;  7    97        2480.            885 0.303</span></span>
-<span id="cb21-12"><a href="#cb21-12"></a><span class="co">#&gt;  8    98        1139.            433 0.320</span></span>
-<span id="cb21-13"><a href="#cb21-13"></a><span class="co">#&gt;  9    99         591.            237 0.334</span></span>
-<span id="cb21-14"><a href="#cb21-14"></a><span class="co">#&gt; 10   100         405.            182 0.367</span></span>
-<span id="cb21-15"><a href="#cb21-15"></a><span class="co">#&gt; 11   101         259.            116 0.366</span></span>
-<span id="cb21-16"><a href="#cb21-16"></a><span class="co">#&gt; 12   102         208.             98 0.382</span></span>
-<span id="cb21-17"><a href="#cb21-17"></a><span class="co">#&gt; 13   103         132.             82 0.473</span></span>
-<span id="cb21-18"><a href="#cb21-18"></a><span class="co">#&gt; 14   104          70.8            42 0.458</span></span>
-<span id="cb21-19"><a href="#cb21-19"></a><span class="co">#&gt; 15   105          37.7            26 0.513</span></span>
-<span id="cb21-20"><a href="#cb21-20"></a><span class="co">#&gt; 16   106          16.9            14 0.586</span></span>
-<span id="cb21-21"><a href="#cb21-21"></a><span class="co">#&gt; 17   107           6.98            2 0.251</span></span>
-<span id="cb21-22"><a href="#cb21-22"></a><span class="co">#&gt; 18   108           3.37            3 0.616</span></span>
-<span id="cb21-23"><a href="#cb21-23"></a><span class="co">#&gt; 19   109           0.8             0 0    </span></span>
-<span id="cb21-24"><a href="#cb21-24"></a><span class="co">#&gt; 20   110           0.17            1 1.49</span></span>
-<span id="cb21-25"><a href="#cb21-25"></a>PopulationTable.AT2017.cut =<span class="st"> </span>PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb21-26"><a href="#cb21-26"></a><span class="st">  </span><span class="kw">mT.fillAges</span>(<span class="dv">0</span><span class="op">:</span><span class="dv">99</span>) <span class="op">%&gt;%</span></span>
-<span id="cb21-27"><a href="#cb21-27"></a><span class="st">  </span><span class="kw">mT.setName</span>(<span class="st">&quot;Austrian Population Mortality 2017, Whittaker-smoothed and cut at age 99&quot;</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1"></a>PopulationData.AT2017.raw <span class="op">%&gt;%</span><span class="st"> </span><span class="kw">filter</span>(age <span class="op">&gt;</span><span class="st"> </span><span class="dv">90</span>)</span>
+<span id="cb23-2"><a href="#cb23-2"></a><span class="co">#&gt; # A tibble: 20 x 4</span></span>
+<span id="cb23-3"><a href="#cb23-3"></a><span class="co">#&gt;      age exposure.total deaths.total  qraw</span></span>
+<span id="cb23-4"><a href="#cb23-4"></a><span class="co">#&gt;    &lt;dbl&gt;          &lt;dbl&gt;        &lt;dbl&gt; &lt;dbl&gt;</span></span>
+<span id="cb23-5"><a href="#cb23-5"></a><span class="co">#&gt;  1    91       15616.           2963 0.173</span></span>
+<span id="cb23-6"><a href="#cb23-6"></a><span class="co">#&gt;  2    92       12870.           2721 0.191</span></span>
+<span id="cb23-7"><a href="#cb23-7"></a><span class="co">#&gt;  3    93       10245.           2451 0.214</span></span>
+<span id="cb23-8"><a href="#cb23-8"></a><span class="co">#&gt;  4    94        8024.           2113 0.233</span></span>
+<span id="cb23-9"><a href="#cb23-9"></a><span class="co">#&gt;  5    95        5875.           1727 0.256</span></span>
+<span id="cb23-10"><a href="#cb23-10"></a><span class="co">#&gt;  6    96        4041.           1382 0.292</span></span>
+<span id="cb23-11"><a href="#cb23-11"></a><span class="co">#&gt;  7    97        2480.            885 0.303</span></span>
+<span id="cb23-12"><a href="#cb23-12"></a><span class="co">#&gt;  8    98        1139.            433 0.320</span></span>
+<span id="cb23-13"><a href="#cb23-13"></a><span class="co">#&gt;  9    99         591.            237 0.334</span></span>
+<span id="cb23-14"><a href="#cb23-14"></a><span class="co">#&gt; 10   100         405.            182 0.367</span></span>
+<span id="cb23-15"><a href="#cb23-15"></a><span class="co">#&gt; 11   101         259.            116 0.366</span></span>
+<span id="cb23-16"><a href="#cb23-16"></a><span class="co">#&gt; 12   102         208.             98 0.382</span></span>
+<span id="cb23-17"><a href="#cb23-17"></a><span class="co">#&gt; 13   103         132.             82 0.473</span></span>
+<span id="cb23-18"><a href="#cb23-18"></a><span class="co">#&gt; 14   104          70.8            42 0.458</span></span>
+<span id="cb23-19"><a href="#cb23-19"></a><span class="co">#&gt; 15   105          37.7            26 0.513</span></span>
+<span id="cb23-20"><a href="#cb23-20"></a><span class="co">#&gt; 16   106          16.9            14 0.586</span></span>
+<span id="cb23-21"><a href="#cb23-21"></a><span class="co">#&gt; 17   107           6.98            2 0.251</span></span>
+<span id="cb23-22"><a href="#cb23-22"></a><span class="co">#&gt; 18   108           3.37            3 0.616</span></span>
+<span id="cb23-23"><a href="#cb23-23"></a><span class="co">#&gt; 19   109           0.8             0 0    </span></span>
+<span id="cb23-24"><a href="#cb23-24"></a><span class="co">#&gt; 20   110           0.17            1 1.49</span></span>
+<span id="cb23-25"><a href="#cb23-25"></a>PopulationTable.AT2017.cut =<span class="st"> </span>PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb23-26"><a href="#cb23-26"></a><span class="st">  </span><span class="kw">mT.fillAges</span>(<span class="dv">0</span><span class="op">:</span><span class="dv">99</span>) <span class="op">%&gt;%</span></span>
+<span id="cb23-27"><a href="#cb23-27"></a><span class="st">  </span><span class="kw">mT.setName</span>(<span class="st">&quot;Austrian Population Mortality 2017, Whittaker-smoothed and cut at age 99&quot;</span>)</span></code></pre></div>
 <p>Even though we don’t have enough statistical data to derive significant mortalities above 100, we still want to create a table that covers this age range by extrapolating the significant table to higher ages. This is typically done by selecting a fitting function and an appropriate age range, where the function is fit to the data. The parameters of the function calibrated to match the mortalities in the fitting range as good as possible are then used to extrapolate the mortalities with the function to ages outside the existing table.</p>
 <p>The function [mT.fitExtrapolationLaw] uses the package  and the function [MortalityLaws::MortalityLaw()] to fit one of the mortality laws ( see [MortalityLaws::availableLaws()] for all available laws) to the data and use that law to extrapolate to the desired ages, with a potential feding-in or fading-out age range.</p>
 <p>In this example, we fit a Heligman-Pollard-type law (HP2) to the raw data and use it to extrapolate up to age 120. The age rante 80–95 is used to linearly switch from the (smoothed) death probabilities of the input table to the death probabilities calculated from the fitted law. So in this case, all observed probabilities above age 95 are not used at all anyway.</p>
-<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1"></a>PopulationTable.AT2017.ex =<span class="st"> </span>PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb22-2"><a href="#cb22-2"></a><span class="st">  </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb22-3"><a href="#cb22-3"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed and extrapolated&quot;</span>)</span>
-<span id="cb22-4"><a href="#cb22-4"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (raw and smoothed), 2017&quot;</span>)  <span class="op">+</span></span>
-<span id="cb22-5"><a href="#cb22-5"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
+<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1"></a>PopulationTable.AT2017.ex =<span class="st"> </span>PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb24-2"><a href="#cb24-2"></a><span class="st">  </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb24-3"><a href="#cb24-3"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed and extrapolated&quot;</span>)</span>
+<span id="cb24-4"><a href="#cb24-4"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (raw and smoothed), 2017&quot;</span>)  <span class="op">+</span></span>
+<span id="cb24-5"><a href="#cb24-5"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 <p>Using different laws and different fitting age ranges can result in quite different results, so be carefull when extrapolating the table and always do a sanity-check on the results!</p>
-<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1"></a><span class="kw">plotMortalityTables</span>(</span>
-<span id="cb23-2"><a href="#cb23-2"></a>  PopulationTable.AT2017, </span>
-<span id="cb23-3"><a href="#cb23-3"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb23-4"><a href="#cb23-4"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb23-5"><a href="#cb23-5"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;Extrapolation: HP2, Fit 75--99&quot;</span>),</span>
-<span id="cb23-6"><a href="#cb23-6"></a>  </span>
-<span id="cb23-7"><a href="#cb23-7"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb23-8"><a href="#cb23-8"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">85</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb23-9"><a href="#cb23-9"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;Extrapolation: HP, Fit 75--85&quot;</span>),</span>
-<span id="cb23-10"><a href="#cb23-10"></a>  </span>
-<span id="cb23-11"><a href="#cb23-11"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb23-12"><a href="#cb23-12"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">90</span><span class="op">:</span><span class="dv">110</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">90</span><span class="op">:</span><span class="dv">100</span>) <span class="op">%&gt;%</span></span>
-<span id="cb23-13"><a href="#cb23-13"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;Extrapolation: HP2, Fit 90--110&quot;</span>),</span>
-<span id="cb23-14"><a href="#cb23-14"></a>  </span>
-<span id="cb23-15"><a href="#cb23-15"></a>  <span class="dt">title =</span> <span class="st">&quot;Examples of different fitting ranges for extrapolation&quot;</span>)  <span class="op">+</span></span>
-<span id="cb23-16"><a href="#cb23-16"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
+<div class="sourceCode" id="cb25"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1"></a><span class="kw">plotMortalityTables</span>(</span>
+<span id="cb25-2"><a href="#cb25-2"></a>  PopulationTable.AT2017, </span>
+<span id="cb25-3"><a href="#cb25-3"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb25-4"><a href="#cb25-4"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb25-5"><a href="#cb25-5"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;Extrapolation: HP2, Fit 75--99&quot;</span>),</span>
+<span id="cb25-6"><a href="#cb25-6"></a>  </span>
+<span id="cb25-7"><a href="#cb25-7"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb25-8"><a href="#cb25-8"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">85</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb25-9"><a href="#cb25-9"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;Extrapolation: HP, Fit 75--85&quot;</span>),</span>
+<span id="cb25-10"><a href="#cb25-10"></a>  </span>
+<span id="cb25-11"><a href="#cb25-11"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb25-12"><a href="#cb25-12"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">90</span><span class="op">:</span><span class="dv">110</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">90</span><span class="op">:</span><span class="dv">100</span>) <span class="op">%&gt;%</span></span>
+<span id="cb25-13"><a href="#cb25-13"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;Extrapolation: HP2, Fit 90--110&quot;</span>),</span>
+<span id="cb25-14"><a href="#cb25-14"></a>  </span>
+<span id="cb25-15"><a href="#cb25-15"></a>  <span class="dt">title =</span> <span class="st">&quot;Examples of different fitting ranges for extrapolation&quot;</span>)  <span class="op">+</span></span>
+<span id="cb25-16"><a href="#cb25-16"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
-<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1"></a><span class="kw">plotMortalityTables</span>(</span>
-<span id="cb24-2"><a href="#cb24-2"></a>  PopulationTable.AT2017, </span>
-<span id="cb24-3"><a href="#cb24-3"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb24-4"><a href="#cb24-4"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb24-5"><a href="#cb24-5"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;HP2&quot;</span>),</span>
-<span id="cb24-6"><a href="#cb24-6"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb24-7"><a href="#cb24-7"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;thiele&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb24-8"><a href="#cb24-8"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;thiele&quot;</span>),</span>
-<span id="cb24-9"><a href="#cb24-9"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb24-10"><a href="#cb24-10"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;ggompertz&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb24-11"><a href="#cb24-11"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;ggompertz&quot;</span>),</span>
-<span id="cb24-12"><a href="#cb24-12"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
-<span id="cb24-13"><a href="#cb24-13"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;carriere1&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb24-14"><a href="#cb24-14"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;carriere1&quot;</span>),</span>
-<span id="cb24-15"><a href="#cb24-15"></a></span>
-<span id="cb24-16"><a href="#cb24-16"></a>  <span class="dt">title =</span> <span class="st">&quot;Examples of different fitting functions for extrapolation (fit 75--99)&quot;</span>, </span>
-<span id="cb24-17"><a href="#cb24-17"></a>  <span class="dt">ages =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">legend.position =</span> <span class="st">&quot;bottom&quot;</span>, <span class="dt">legend.key.width =</span> <span class="kw">unit</span>(<span class="dv">15</span>, <span class="st">&quot;mm&quot;</span>))  <span class="op">+</span></span>
-<span id="cb24-18"><a href="#cb24-18"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type) <span class="op">+</span><span class="st"> </span><span class="kw">labs</span>(<span class="dt">colour =</span> <span class="st">&quot;Mortality Law&quot;</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb26"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1"></a><span class="kw">plotMortalityTables</span>(</span>
+<span id="cb26-2"><a href="#cb26-2"></a>  PopulationTable.AT2017, </span>
+<span id="cb26-3"><a href="#cb26-3"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb26-4"><a href="#cb26-4"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;HP2&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb26-5"><a href="#cb26-5"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;HP2&quot;</span>),</span>
+<span id="cb26-6"><a href="#cb26-6"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb26-7"><a href="#cb26-7"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;thiele&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb26-8"><a href="#cb26-8"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;thiele&quot;</span>),</span>
+<span id="cb26-9"><a href="#cb26-9"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb26-10"><a href="#cb26-10"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;ggompertz&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb26-11"><a href="#cb26-11"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;ggompertz&quot;</span>),</span>
+<span id="cb26-12"><a href="#cb26-12"></a>  PopulationTable.AT2017.smooth <span class="op">%&gt;%</span></span>
+<span id="cb26-13"><a href="#cb26-13"></a><span class="st">    </span><span class="kw">mT.fitExtrapolationLaw</span>(<span class="dt">law =</span> <span class="st">&quot;carriere1&quot;</span>, <span class="dt">fit =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">99</span>, <span class="dt">extrapolate =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">fadeIn =</span> <span class="dv">80</span><span class="op">:</span><span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb26-14"><a href="#cb26-14"></a><span class="st">    </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;carriere1&quot;</span>),</span>
+<span id="cb26-15"><a href="#cb26-15"></a></span>
+<span id="cb26-16"><a href="#cb26-16"></a>  <span class="dt">title =</span> <span class="st">&quot;Examples of different fitting functions for extrapolation (fit 75--99)&quot;</span>, </span>
+<span id="cb26-17"><a href="#cb26-17"></a>  <span class="dt">ages =</span> <span class="dv">75</span><span class="op">:</span><span class="dv">120</span>, <span class="dt">legend.position =</span> <span class="st">&quot;bottom&quot;</span>, <span class="dt">legend.key.width =</span> <span class="kw">unit</span>(<span class="dv">15</span>, <span class="st">&quot;mm&quot;</span>))  <span class="op">+</span></span>
+<span id="cb26-18"><a href="#cb26-18"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type) <span class="op">+</span><span class="st"> </span><span class="kw">labs</span>(<span class="dt">colour =</span> <span class="st">&quot;Mortality Law&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 <p>The Austrian population mortality table for the year 2017 derived above is a period life table describing the observed mortality only in the year 2017. To describe death probabilities for a given person, one needs to take into account the mortality improvements and project the mortality into the future from the observation year. This can be done with age-dependent yearly mortality improvements, also called mortaltity trend <span class="math inline">\(\labmda_x\)</span>.</p>
 <p>For simplicity, we will use the trend <span class="math inline">\(\labmda_x\)</span> of the medium scenario of the mortality forecast of the Statistik Austria (forecast from 2016 to roughly 2080). These forecast tables are available as the mortality table  for male and female separately. Even though we derived a table for unisex, we will apply the male trends for simplicity. In practice, of course you would derive proper unisex trends from the available data.</p>
-<div class="sourceCode" id="cb25"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1"></a><span class="kw">mortalityTables.load</span>(<span class="st">&quot;Austria_PopulationForecast&quot;</span>)</span>
-<span id="cb25-2"><a href="#cb25-2"></a><span class="co">#&gt; Loading table dataset &#39;Austria_PopulationForecast&#39;</span></span>
-<span id="cb25-3"><a href="#cb25-3"></a><span class="kw">plotMortalityTrend</span>(mort.AT.forecast, <span class="dt">title =</span> <span class="st">&quot;Forecast trend (medium scenario) by Statistik Austria&quot;</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb27"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1"></a><span class="kw">mortalityTables.load</span>(<span class="st">&quot;Austria_PopulationForecast&quot;</span>)</span>
+<span id="cb27-2"><a href="#cb27-2"></a><span class="co">#&gt; Loading table dataset &#39;Austria_PopulationForecast&#39;</span></span>
+<span id="cb27-3"><a href="#cb27-3"></a><span class="kw">plotMortalityTrend</span>(mort.AT.forecast, <span class="dt">title =</span> <span class="st">&quot;Forecast trend (medium scenario) by Statistik Austria&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --> As we can see, the trends appear to be derived from data until age 94 and then set to a constant value (“floor”). Let us first apply the male trend to the observed period life table of the year 2017, and then extrapolate the trend from age 94 to higher ages by an exponential function towards zero. The first can be done with the function [mT.addTrend()], while the second can be done with [mT.extrapolateTrendExp()]:</p>
-<div class="sourceCode" id="cb26"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1"></a>PopulationTable.AT2017.trend =<span class="st"> </span>PopulationTable.AT2017.ex <span class="op">%&gt;%</span></span>
-<span id="cb26-2"><a href="#cb26-2"></a><span class="st">  </span><span class="kw">mT.addTrend</span>(mort.AT.forecast<span class="op">$</span>m<span class="op">@</span>trend, <span class="dt">trendages =</span> <span class="kw">ages</span>(mort.AT.forecast<span class="op">$</span>m)) <span class="op">%&gt;%</span></span>
-<span id="cb26-3"><a href="#cb26-3"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed, extrapolated, trend&quot;</span>)</span>
-<span id="cb26-4"><a href="#cb26-4"></a></span>
-<span id="cb26-5"><a href="#cb26-5"></a>PopulationTable.AT2017.trend.ex =<span class="st"> </span>PopulationTable.AT2017.trend <span class="op">%&gt;%</span></span>
-<span id="cb26-6"><a href="#cb26-6"></a><span class="st">  </span><span class="kw">mT.extrapolateTrendExp</span>(<span class="dv">95</span>) <span class="op">%&gt;%</span></span>
-<span id="cb26-7"><a href="#cb26-7"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed, extrapolated, trend extrapolated&quot;</span>)</span>
-<span id="cb26-8"><a href="#cb26-8"></a></span>
-<span id="cb26-9"><a href="#cb26-9"></a><span class="kw">plotMortalityTrend</span>(PopulationTable.AT2017.trend, PopulationTable.AT2017.trend.ex,</span>
-<span id="cb26-10"><a href="#cb26-10"></a>                   <span class="dt">title =</span> <span class="st">&quot;Extrapolating the trend via Exponential function&quot;</span>) <span class="op">+</span></span>
-<span id="cb26-11"><a href="#cb26-11"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">color =</span> type)</span>
-<span id="cb26-12"><a href="#cb26-12"></a><span class="co">#&gt; Warning: Removed 20 row(s) containing missing values (geom_path).</span></span></code></pre></div>
+<div class="sourceCode" id="cb28"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1"></a>PopulationTable.AT2017.trend =<span class="st"> </span>PopulationTable.AT2017.ex <span class="op">%&gt;%</span></span>
+<span id="cb28-2"><a href="#cb28-2"></a><span class="st">  </span><span class="kw">mT.addTrend</span>(mort.AT.forecast<span class="op">$</span>m<span class="op">@</span>trend, <span class="dt">trendages =</span> <span class="kw">ages</span>(mort.AT.forecast<span class="op">$</span>m)) <span class="op">%&gt;%</span></span>
+<span id="cb28-3"><a href="#cb28-3"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed, extrapolated, trend&quot;</span>)</span>
+<span id="cb28-4"><a href="#cb28-4"></a></span>
+<span id="cb28-5"><a href="#cb28-5"></a>PopulationTable.AT2017.trend.ex =<span class="st"> </span>PopulationTable.AT2017.trend <span class="op">%&gt;%</span></span>
+<span id="cb28-6"><a href="#cb28-6"></a><span class="st">  </span><span class="kw">mT.extrapolateTrendExp</span>(<span class="dv">95</span>) <span class="op">%&gt;%</span></span>
+<span id="cb28-7"><a href="#cb28-7"></a><span class="st">  </span><span class="kw">mT.setDimInfo</span>(<span class="dt">type =</span> <span class="st">&quot;smoothed, extrapolated, trend extrapolated&quot;</span>)</span>
+<span id="cb28-8"><a href="#cb28-8"></a></span>
+<span id="cb28-9"><a href="#cb28-9"></a><span class="kw">plotMortalityTrend</span>(PopulationTable.AT2017.trend, PopulationTable.AT2017.trend.ex,</span>
+<span id="cb28-10"><a href="#cb28-10"></a>                   <span class="dt">title =</span> <span class="st">&quot;Extrapolating the trend via Exponential function&quot;</span>) <span class="op">+</span></span>
+<span id="cb28-11"><a href="#cb28-11"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">color =</span> type)</span>
+<span id="cb28-12"><a href="#cb28-12"></a><span class="co">#&gt; Warning: Removed 20 row(s) containing missing values (geom_path).</span></span></code></pre></div>
 <p><img src="" /><!-- --></p>
-<div class="sourceCode" id="cb27"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1"></a></span>
-<span id="cb27-2"><a href="#cb27-2"></a></span>
-<span id="cb27-3"><a href="#cb27-3"></a></span>
-<span id="cb27-4"><a href="#cb27-4"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, PopulationTable.AT2017.trend.ex, <span class="dt">YOB =</span> <span class="dv">1980</span>, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (Period 2017 vs. Generation 1980)&quot;</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.01</span>, <span class="fl">0.99</span>), <span class="dt">legend.justification =</span> <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">1</span>))  <span class="op">+</span></span>
-<span id="cb27-5"><a href="#cb27-5"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
+<div class="sourceCode" id="cb29"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1"></a></span>
+<span id="cb29-2"><a href="#cb29-2"></a></span>
+<span id="cb29-3"><a href="#cb29-3"></a></span>
+<span id="cb29-4"><a href="#cb29-4"></a><span class="kw">plotMortalityTables</span>(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, PopulationTable.AT2017.trend.ex, <span class="dt">YOB =</span> <span class="dv">1980</span>, <span class="dt">title =</span> <span class="st">&quot;Austrian population mortality (Period 2017 vs. Generation 1980)&quot;</span>, <span class="dt">legend.position =</span> <span class="kw">c</span>(<span class="fl">0.01</span>, <span class="fl">0.99</span>), <span class="dt">legend.justification =</span> <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">1</span>))  <span class="op">+</span></span>
+<span id="cb29-5"><a href="#cb29-5"></a><span class="st">  </span><span class="kw">aes</span>(<span class="dt">colour =</span> type)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 <p>So we have now started from raw data, calculated the death probabilities, smoothed them using Whittaker-Henderson, extrapolated to very old ages and added a trend to create a nice Cohort Life Table. We could now store the  in an .RData file and distribute it to the public. However, we might miss that all our modification were also recorded inside the mortality table (to allow later introspection into what was done and what was the result). For a published table, this might not be desired, so we first need to clean this additional support data with the [mT.cleanup()] function, which does not modify the table itself, but only removes all non-essential supporting information from the table:</p>
-<div class="sourceCode" id="cb28"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1"></a><span class="co"># Lots of non-essential or support information is stored inside the table&#39;s data field:</span></span>
-<span id="cb28-2"><a href="#cb28-2"></a>PopulationTable.AT2017.trend.ex<span class="op">@</span>data<span class="op">$</span>whittaker</span>
-<span id="cb28-3"><a href="#cb28-3"></a><span class="co">#&gt; $weights</span></span>
-<span id="cb28-4"><a href="#cb28-4"></a><span class="co">#&gt;   [1] 9.902640e-03 9.906213e-03 9.790593e-03 9.633836e-03 9.526789e-03</span></span>
-<span id="cb28-5"><a href="#cb28-5"></a><span class="co">#&gt;   [6] 9.507835e-03 9.578069e-03 9.441193e-03 9.378177e-03 9.433871e-03</span></span>
-<span id="cb28-6"><a href="#cb28-6"></a><span class="co">#&gt;  [11] 9.457978e-03 9.565714e-03 9.682226e-03 9.623760e-03 9.729914e-03</span></span>
-<span id="cb28-7"><a href="#cb28-7"></a><span class="co">#&gt;  [16] 9.716248e-03 9.834353e-03 1.011500e-02 1.041901e-02 1.099756e-02</span></span>
-<span id="cb28-8"><a href="#cb28-8"></a><span class="co">#&gt;  [21] 1.181051e-02 1.201924e-02 1.235036e-02 1.289431e-02 1.336379e-02</span></span>
-<span id="cb28-9"><a href="#cb28-9"></a><span class="co">#&gt;  [26] 1.359387e-02 1.372999e-02 1.362733e-02 1.371012e-02 1.366066e-02</span></span>
-<span id="cb28-10"><a href="#cb28-10"></a><span class="co">#&gt;  [31] 1.345438e-02 1.351974e-02 1.364485e-02 1.359768e-02 1.379285e-02</span></span>
-<span id="cb28-11"><a href="#cb28-11"></a><span class="co">#&gt;  [36] 1.393752e-02 1.375612e-02 1.301095e-02 1.271099e-02 1.250115e-02</span></span>
-<span id="cb28-12"><a href="#cb28-12"></a><span class="co">#&gt;  [41] 1.247615e-02 1.276387e-02 1.328318e-02 1.331546e-02 1.369437e-02</span></span>
-<span id="cb28-13"><a href="#cb28-13"></a><span class="co">#&gt;  [46] 1.431341e-02 1.474252e-02 1.535602e-02 1.610024e-02 1.627307e-02</span></span>
-<span id="cb28-14"><a href="#cb28-14"></a><span class="co">#&gt;  [51] 1.624561e-02 1.614926e-02 1.640552e-02 1.622923e-02 1.614036e-02</span></span>
-<span id="cb28-15"><a href="#cb28-15"></a><span class="co">#&gt;  [56] 1.559669e-02 1.497483e-02 1.440294e-02 1.380555e-02 1.326929e-02</span></span>
-<span id="cb28-16"><a href="#cb28-16"></a><span class="co">#&gt;  [61] 1.297614e-02 1.235557e-02 1.150436e-02 1.096556e-02 1.067262e-02</span></span>
-<span id="cb28-17"><a href="#cb28-17"></a><span class="co">#&gt;  [66] 1.024972e-02 1.007565e-02 1.007801e-02 1.041158e-02 1.033101e-02</span></span>
-<span id="cb28-18"><a href="#cb28-18"></a><span class="co">#&gt;  [71] 9.974142e-03 7.170591e-03 8.164682e-03 8.929619e-03 8.506759e-03</span></span>
-<span id="cb28-19"><a href="#cb28-19"></a><span class="co">#&gt;  [76] 9.195433e-03 9.656996e-03 1.012315e-02 7.949747e-03 5.845014e-03</span></span>
-<span id="cb28-20"><a href="#cb28-20"></a><span class="co">#&gt;  [81] 5.360872e-03 5.043744e-03 4.724615e-03 4.477298e-03 4.308243e-03</span></span>
-<span id="cb28-21"><a href="#cb28-21"></a><span class="co">#&gt;  [86] 3.996696e-03 3.728356e-03 3.335648e-03 2.879870e-03 2.421901e-03</span></span>
-<span id="cb28-22"><a href="#cb28-22"></a><span class="co">#&gt;  [91] 2.071341e-03 1.775088e-03 1.462955e-03 1.164619e-03 9.120986e-04</span></span>
-<span id="cb28-23"><a href="#cb28-23"></a><span class="co">#&gt;  [96] 6.678433e-04 4.593908e-04 2.819566e-04 1.294273e-04 6.713604e-05</span></span>
-<span id="cb28-24"><a href="#cb28-24"></a><span class="co">#&gt; [101] 4.608583e-05 2.945073e-05 2.359083e-05 1.503001e-05 8.048140e-06</span></span>
-<span id="cb28-25"><a href="#cb28-25"></a><span class="co">#&gt; [106] 4.288931e-06 1.918822e-06 7.934465e-07 3.830824e-07 0.000000e+00</span></span>
-<span id="cb28-26"><a href="#cb28-26"></a><span class="co">#&gt; [111] 1.932463e-08</span></span>
-<span id="cb28-27"><a href="#cb28-27"></a></span>
-<span id="cb28-28"><a href="#cb28-28"></a><span class="co"># Clean up the table (remove all non-essential data, but do not modify results)</span></span>
-<span id="cb28-29"><a href="#cb28-29"></a>PopulationTable.AT2017.Cohort.FINAL =<span class="st"> </span>PopulationTable.AT2017.trend.ex <span class="op">%&gt;%</span></span>
-<span id="cb28-30"><a href="#cb28-30"></a><span class="st">  </span><span class="kw">mT.cleanup</span>() <span class="op">%&gt;%</span></span>
-<span id="cb28-31"><a href="#cb28-31"></a><span class="st">  </span><span class="kw">mT.round</span>(<span class="dt">digits =</span> <span class="dv">6</span>) <span class="op">%&gt;%</span></span>
-<span id="cb28-32"><a href="#cb28-32"></a><span class="st">  </span><span class="kw">mT.setName</span>(<span class="st">&quot;Austrian Population Mortality, Period 2017 with trend projection&quot;</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb30"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1"></a><span class="co"># Lots of non-essential or support information is stored inside the table&#39;s data field:</span></span>
+<span id="cb30-2"><a href="#cb30-2"></a>PopulationTable.AT2017.trend.ex<span class="op">@</span>data<span class="op">$</span>whittaker</span>
+<span id="cb30-3"><a href="#cb30-3"></a><span class="co">#&gt; $weights</span></span>
+<span id="cb30-4"><a href="#cb30-4"></a><span class="co">#&gt;   [1] 9.902640e-03 9.906213e-03 9.790593e-03 9.633836e-03 9.526789e-03</span></span>
+<span id="cb30-5"><a href="#cb30-5"></a><span class="co">#&gt;   [6] 9.507835e-03 9.578069e-03 9.441193e-03 9.378177e-03 9.433871e-03</span></span>
+<span id="cb30-6"><a href="#cb30-6"></a><span class="co">#&gt;  [11] 9.457978e-03 9.565714e-03 9.682226e-03 9.623760e-03 9.729914e-03</span></span>
+<span id="cb30-7"><a href="#cb30-7"></a><span class="co">#&gt;  [16] 9.716248e-03 9.834353e-03 1.011500e-02 1.041901e-02 1.099756e-02</span></span>
+<span id="cb30-8"><a href="#cb30-8"></a><span class="co">#&gt;  [21] 1.181051e-02 1.201924e-02 1.235036e-02 1.289431e-02 1.336379e-02</span></span>
+<span id="cb30-9"><a href="#cb30-9"></a><span class="co">#&gt;  [26] 1.359387e-02 1.372999e-02 1.362733e-02 1.371012e-02 1.366066e-02</span></span>
+<span id="cb30-10"><a href="#cb30-10"></a><span class="co">#&gt;  [31] 1.345438e-02 1.351974e-02 1.364485e-02 1.359768e-02 1.379285e-02</span></span>
+<span id="cb30-11"><a href="#cb30-11"></a><span class="co">#&gt;  [36] 1.393752e-02 1.375612e-02 1.301095e-02 1.271099e-02 1.250115e-02</span></span>
+<span id="cb30-12"><a href="#cb30-12"></a><span class="co">#&gt;  [41] 1.247615e-02 1.276387e-02 1.328318e-02 1.331546e-02 1.369437e-02</span></span>
+<span id="cb30-13"><a href="#cb30-13"></a><span class="co">#&gt;  [46] 1.431341e-02 1.474252e-02 1.535602e-02 1.610024e-02 1.627307e-02</span></span>
+<span id="cb30-14"><a href="#cb30-14"></a><span class="co">#&gt;  [51] 1.624561e-02 1.614926e-02 1.640552e-02 1.622923e-02 1.614036e-02</span></span>
+<span id="cb30-15"><a href="#cb30-15"></a><span class="co">#&gt;  [56] 1.559669e-02 1.497483e-02 1.440294e-02 1.380555e-02 1.326929e-02</span></span>
+<span id="cb30-16"><a href="#cb30-16"></a><span class="co">#&gt;  [61] 1.297614e-02 1.235557e-02 1.150436e-02 1.096556e-02 1.067262e-02</span></span>
+<span id="cb30-17"><a href="#cb30-17"></a><span class="co">#&gt;  [66] 1.024972e-02 1.007565e-02 1.007801e-02 1.041158e-02 1.033101e-02</span></span>
+<span id="cb30-18"><a href="#cb30-18"></a><span class="co">#&gt;  [71] 9.974142e-03 7.170591e-03 8.164682e-03 8.929619e-03 8.506759e-03</span></span>
+<span id="cb30-19"><a href="#cb30-19"></a><span class="co">#&gt;  [76] 9.195433e-03 9.656996e-03 1.012315e-02 7.949747e-03 5.845014e-03</span></span>
+<span id="cb30-20"><a href="#cb30-20"></a><span class="co">#&gt;  [81] 5.360872e-03 5.043744e-03 4.724615e-03 4.477298e-03 4.308243e-03</span></span>
+<span id="cb30-21"><a href="#cb30-21"></a><span class="co">#&gt;  [86] 3.996696e-03 3.728356e-03 3.335648e-03 2.879870e-03 2.421901e-03</span></span>
+<span id="cb30-22"><a href="#cb30-22"></a><span class="co">#&gt;  [91] 2.071341e-03 1.775088e-03 1.462955e-03 1.164619e-03 9.120986e-04</span></span>
+<span id="cb30-23"><a href="#cb30-23"></a><span class="co">#&gt;  [96] 6.678433e-04 4.593908e-04 2.819566e-04 1.294273e-04 6.713604e-05</span></span>
+<span id="cb30-24"><a href="#cb30-24"></a><span class="co">#&gt; [101] 4.608583e-05 2.945073e-05 2.359083e-05 1.503001e-05 8.048140e-06</span></span>
+<span id="cb30-25"><a href="#cb30-25"></a><span class="co">#&gt; [106] 4.288931e-06 1.918822e-06 7.934465e-07 3.830824e-07 0.000000e+00</span></span>
+<span id="cb30-26"><a href="#cb30-26"></a><span class="co">#&gt; [111] 1.932463e-08</span></span>
+<span id="cb30-27"><a href="#cb30-27"></a></span>
+<span id="cb30-28"><a href="#cb30-28"></a><span class="co"># Clean up the table (remove all non-essential data, but do not modify results)</span></span>
+<span id="cb30-29"><a href="#cb30-29"></a>PopulationTable.AT2017.Cohort.FINAL =<span class="st"> </span>PopulationTable.AT2017.trend.ex <span class="op">%&gt;%</span></span>
+<span id="cb30-30"><a href="#cb30-30"></a><span class="st">  </span><span class="kw">mT.cleanup</span>() <span class="op">%&gt;%</span></span>
+<span id="cb30-31"><a href="#cb30-31"></a><span class="st">  </span><span class="kw">mT.round</span>(<span class="dt">digits =</span> <span class="dv">6</span>) <span class="op">%&gt;%</span></span>
+<span id="cb30-32"><a href="#cb30-32"></a><span class="st">  </span><span class="kw">mT.setName</span>(<span class="st">&quot;Austrian Population Mortality, Period 2017 with trend projection&quot;</span>)</span></code></pre></div>
 <p>Other functions that might be useful before publishing a table are: * [mT.translate()], which simply moves the base year of the internal representation of a cohort life table to a different year (by applying the trend according to the translation), but leaves cohort death probabilities unchanged. * [mT.round()], which rounds the probabilities of the base table and the trend to the given number of digits.</p>
 <p>When using a population mortality table like the one we just derived in insurance contracts, the actuary often considers adding a certain security loading (e.g. 25% on all death probabilities) to ensure sufficient security and ensure the legal requirement of a prudent person. This can be done with the function [mT.scaleProbs()]:</p>
-<div class="sourceCode" id="cb29"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1"></a>TableForProduct =<span class="st"> </span>PopulationTable.AT2017.Cohort.FINAL <span class="op">%&gt;%</span></span>
-<span id="cb29-2"><a href="#cb29-2"></a><span class="st">  </span><span class="kw">mT.scaleProbs</span>(<span class="dt">factor =</span> <span class="fl">1.25</span>, <span class="dt">name.postfix =</span> <span class="st">&quot;10% security added&quot;</span>)</span>
-<span id="cb29-3"><a href="#cb29-3"></a></span>
-<span id="cb29-4"><a href="#cb29-4"></a><span class="kw">plotMortalityTables</span>(TableForProduct, PopulationTable.AT2017.Cohort.FINAL, </span>
-<span id="cb29-5"><a href="#cb29-5"></a>                    <span class="dt">title =</span> <span class="st">&quot;Adding a security loading of 25%&quot;</span>, <span class="dt">Period =</span> <span class="dv">2017</span>, <span class="dt">legend.position =</span> <span class="st">&quot;bottom&quot;</span>)</span></code></pre></div>
+<div class="sourceCode" id="cb31"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb31-1"><a href="#cb31-1"></a>TableForProduct =<span class="st"> </span>PopulationTable.AT2017.Cohort.FINAL <span class="op">%&gt;%</span></span>
+<span id="cb31-2"><a href="#cb31-2"></a><span class="st">  </span><span class="kw">mT.scaleProbs</span>(<span class="dt">factor =</span> <span class="fl">1.25</span>, <span class="dt">name.postfix =</span> <span class="st">&quot;10% security added&quot;</span>)</span>
+<span id="cb31-3"><a href="#cb31-3"></a></span>
+<span id="cb31-4"><a href="#cb31-4"></a><span class="kw">plotMortalityTables</span>(TableForProduct, PopulationTable.AT2017.Cohort.FINAL, </span>
+<span id="cb31-5"><a href="#cb31-5"></a>                    <span class="dt">title =</span> <span class="st">&quot;Adding a security loading of 25%&quot;</span>, <span class="dt">Period =</span> <span class="dv">2017</span>, <span class="dt">legend.position =</span> <span class="st">&quot;bottom&quot;</span>)</span></code></pre></div>
 <p><img src="" /><!-- --></p>
 </div>
-<div id="pension-tables" class="section level2">
-<h2>Pension Tables</h2>
+<div id="pension-tables" class="section level1">
+<h1><span class="header-section-number">8</span> Pension Tables</h1>
 <p>Pension tables generalize mortality tables in that the state space is increased from two states (alive / dead) to four states (active / invalidity or realy retirement / old age retirement / dead). As a consequence, there is no longer just one transition probability, but multiple.</p>
 <p>Possible states are:</p>
 <ul>